Advertisement

Luminescent Chemosensors: From Molecules to Nanostructures

  • Nelsi ZaccheroniEmail author
  • Francesco Palomba
  • Enrico Rampazzo
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)

Abstract

Chemical analysis has been improved by the advent of sensory devices based on chemosensors that are able to transform chemical information (composition, concentration, etc.) into an analytically useful signal. These devices, in fact, find applications in many different areas of great social and economic impact. Among all the possible chemosensors, we focus here our attention on luminescent ones as they present many advantages such as sensitiveness, low cost, ease of use and versatility. After a discussion on their pros and cons and of the most important features in the design of new species with customized properties, we present selected examples of different chemosensors that take advantage from various transduction mechanisms always following a supramolecular approach. A step forward in the research and application has been done implementing these structures in nanosized materials to obtain powerful and versatile platforms for addressing crucial issues in sensing, imaging, and molecular testing. In this context we have chosen to restrict the discussion on luminescent multichromophoric silica-based nanoprobes as a virtuous example of how a high design versatility allows the preparation of nanostructures where modulation and multifunctionality offer the possibility to induce collective energy- and electron-transfer processes, that are at the base of signal amplification effects.

Keywords

Silica Nanoparticles Fluorescence Resonance Energy Transfer Photoinduced Electron Transfer Excited State Intramolecular Proton Transfer Internal Charge Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anthony WC (1993) Fluorescent chemosensors for ion and molecule recognition, vol 538, ACS Symposium Series. American Chemical Society, Washington, DC. doi: 10.1021/bk-1993-0538 Google Scholar
  2. 2.
    David RW, Christiane M, Ping Y, Shufang L, Steven B (1989) Design, preparation, and applications of fiber-optic chemical sensors for continuous monitoring. In: Chemical sensors and microinstrumentation. ACS Symposium Series, vol 403. American Chemical Society, pp 252–272. doi: 10.1021/bk-1989-0403.ch017
  3. 3.
    Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors. Anal Chem 86(1):15–29. doi: 10.1021/ac4035168 CrossRefGoogle Scholar
  4. 4.
    Steed JW, Turner DR, Wallace K (2007) Core concepts in supramolecular chemistry and nanochemistry. Wiley, ChichesterGoogle Scholar
  5. 5.
    Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44(13):4185–4191. doi: 10.1039/c4cs00280f CrossRefGoogle Scholar
  6. 6.
    Weller A (1968) Electron-transfer and complex formation in the excited state. Pure Appl Chem 16:115–123. doi: 10.1351/pac196816010115 CrossRefGoogle Scholar
  7. 7.
    Marcus RA (1956) On the theory of oxidation‐reduction reactions involving electron transfer. I. J Chem Phys 24(5):966–978. doi:http://dx.doi.org/10.1063/1.1742723
  8. 8.
    Richard AB, Silva APd, Gunaratne HQN, Lynch PLM, Colin PM, Glenn EMM, Sandanayake KRAS (1993) Fluorescent photoinduced electron-transfer sensors. In: Fluorescent chemosensors for ion and molecule recognition. ACS Symposium Series, vol 538. American Chemical Society, p 45–58. doi: 10.1021/bk-1993-0538.ch004
  9. 9.
    de Silva AP (2011) Luminescent Photoinduced Electron Transfer (PET) molecules for sensing and logic operations. J Phys Chem Lett 2(22):2865–2871. doi: 10.1021/jz201311p CrossRefGoogle Scholar
  10. 10.
    Daly B, Ling J, de Silva AP (2015) Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chem Soc Rev 44(13):4203–4211. doi: 10.1039/c4cs00334a CrossRefGoogle Scholar
  11. 11.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566. doi: 10.1021/cr960386p CrossRefGoogle Scholar
  12. 12.
    Batat P, Vives G, Bofinger R, Chang R-W, Kauffmann B, Oda R, Jonusauskas G, McClenaghan ND (2012) Dynamics of ion-regulated photoinduced electron transfer in BODIPY-BAPTA conjugates. Photochem Photobiol Sci 11(11):1666–1674. doi: 10.1039/c2pp25130b CrossRefGoogle Scholar
  13. 13.
    Fan J, Hu M, Zhan P, Peng X (2013) Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev 42(1):29–43. doi: 10.1039/c2cs35273g CrossRefGoogle Scholar
  14. 14.
    Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107(9):3780–3799. doi: 10.1021/cr068046j CrossRefGoogle Scholar
  15. 15.
    Yeung MC, Yam VW (2015) Luminescent cation sensors: from host-guest chemistry, supramolecular chemistry to reaction-based mechanisms. Chem Soc Rev 44(13):4192–4202. doi: 10.1039/c4cs00391h CrossRefGoogle Scholar
  16. 16.
    Yang R-H, Chan W-H, Lee AWM, Xia P-F, Zhang H-K (2003) A ratiometric fluorescent sensor for AgI with high selectivity and sensitivity. J Am Chem Soc 125(10):2884–2885. doi: 10.1021/ja029253d CrossRefGoogle Scholar
  17. 17.
    Kim SK, Lee SH, Lee JY, Lee JY, Bartsch RA, Kim JS (2004) An excimer-based, binuclear, on–off switchable calix[4]crown chemosensor. J Am Chem Soc 126(50):16499–16506. doi: 10.1021/ja045689c CrossRefGoogle Scholar
  18. 18.
    Xu Z, Singh NJ, Lim J, Pan J, Kim HN, Park S, Kim KS, Yoon J (2009) Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH. J Am Chem Soc 131(42):15528–15533. doi: 10.1021/ja906855a CrossRefGoogle Scholar
  19. 19.
    Ostergaard ME, Hrdlicka PJ (2011) Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): tools for fundamental research, diagnostics, and nanotechnology. Chem Soc Rev 40(12):5771–5788. doi: 10.1039/c1cs15014f CrossRefGoogle Scholar
  20. 20.
    Wu J, Zou Y, Li C, Sicking W, Piantanida I, Yi T, Schmuck C (2012) A molecular peptide beacon for the ratiometric sensing of nucleic acids. J Am Chem Soc 134(4):1958–1961. doi: 10.1021/ja2103845 CrossRefGoogle Scholar
  21. 21.
    Masseroni D, Biavardi E, Genovese D, Rampazzo E, Prodi L, Dalcanale E (2015) A fluorescent probe for ecstasy. Chem Commun 51(64):12799–12802. doi: 10.1039/c5cc04760a CrossRefGoogle Scholar
  22. 22.
    Minami T, Liu Y, Akdeniz A, Koutnik P, Esipenko NA, Nishiyabu R, Kubo Y, Anzenbacher P (2014) Intramolecular indicator displacement assay for anions: supramolecular sensor for glyphosate. J Am Chem Soc 136(32):11396–11401. doi: 10.1021/ja504535q CrossRefGoogle Scholar
  23. 23.
    Khatua S, Choi SH, Lee J, Kim K, Do Y, Churchill DG (2009) Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex. Inorg Chem 48(7):2993–2999. doi: 10.1021/ic8022387 CrossRefGoogle Scholar
  24. 24.
    You L, Zha D, Anslyn EV (2015) Recent advances in supramolecular analytical chemistry using optical sensing. Chem Rev 115(15):7840–7892. doi: 10.1021/cr5005524 CrossRefGoogle Scholar
  25. 25.
    Ghale G, Nau WM (2014) Dynamically analyte-responsive macrocyclic host–fluorophore systems. Acc Chem Res 47(7):2150–2159. doi: 10.1021/ar500116d CrossRefGoogle Scholar
  26. 26.
    Hamilton GR, Sahoo SK, Kamila S, Singh N, Kaur N, Hyland BW, Callan JF (2015) Optical probes for the detection of protons, and alkali and alkaline earth metal cations. Chem Soc Rev 44(13):4415–4432. doi: 10.1039/c4cs00365a CrossRefGoogle Scholar
  27. 27.
    Yin J, Hu Y, Yoon J (2015) Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem Soc Rev 44(14):4619–4644. doi: 10.1039/c4cs00275j CrossRefGoogle Scholar
  28. 28.
    Ashton TD, Jolliffe KA, Pfeffer FM (2015) Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem Soc Rev 44(14):4547–4595. doi: 10.1039/c4cs00372a CrossRefGoogle Scholar
  29. 29.
    Gale PA, Caltagirone C (2015) Anion sensing by small molecules and molecular ensembles. Chem Soc Rev 44(13):4212–4227. doi: 10.1039/c4cs00179f CrossRefGoogle Scholar
  30. 30.
    Guo Z, Chen G, Zeng G, Li Z, Chen A, Wang J, Jiang L (2015) Fluorescence chemosensors for hydrogen sulfide detection in biological systems. Analyst 140(6):1772–1786. doi: 10.1039/c4an01909a CrossRefGoogle Scholar
  31. 31.
    Liu T, Liu X, Spring DR, Qian X, Cui J, Xu Z (2014) Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe. Sci Rep 4:5418. doi: 10.1038/srep05418 Google Scholar
  32. 32.
    Miller EW, Lin JY, Frady EP, Steinbach PA, Kristan WB, Tsien RY (2012) Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc Natl Acad Sci 109(6):2114–2119. doi: 10.1073/pnas.1120694109 CrossRefGoogle Scholar
  33. 33.
    Roger YT (1993) Fluorescent and photochemical probes of dynamic biochemical signals inside living cells. In: Fluorescent chemosensors for ion and molecule recognition. ACS Symposium Series, vol 538. American Chemical Society, pp 130–146. doi: 10.1021/bk-1993-0538.ch009
  34. 34.
    Divakar M, Mariann EL (1993) Fluorescent chemosensors for monitoring potassium in blood and across biological membranes. In: Fluorescent chemosensors for ion and molecule recognition. ACS Symposium Series, vol 538. American Chemical Society, pp 162–182. doi:  10.1021/bk-1993-0538.ch011
  35. 35.
    Michael AK (1993) 1,2-Bis(2-aminophenoxy)ethane- < italic > N,N,N?,N?</italic>,-tetraacetic acid conjugates used to measure intracellular Ca < sup >2+</sup > concentration. In: Fluorescent chemosensors for ion and molecule recognition. ACS Symposium Series, vol 538. American Chemical Society, pp 147–161. doi: 10.1021/bk-1993-0538.ch010
  36. 36.
    Farruggia G, Iotti S, Prodi L, Montalti M, Zaccheroni N, Savage PB, Trapani V, Sale P, Wolf FI (2006) 8-hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J Am Chem Soc 128(1):344–350. doi: 10.1021/ja056523u CrossRefGoogle Scholar
  37. 37.
    Marraccini C, Farruggia G, Lombardo M, Prodi L, Sgarzi M, Trapani V, Trombini C, Wolf FI, Zaccheroni N, Iotti S (2012) Diaza-18-crown-6 hydroxyquinoline derivatives as flexible tools for the assessment and imaging of total intracellular magnesium. Chem Sci 3(3):727–734. doi: 10.1039/c1sc00751c CrossRefGoogle Scholar
  38. 38.
    Qian X, Xu Z (2015) Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev 44(14):4487–4493. doi: 10.1039/c4cs00292j CrossRefGoogle Scholar
  39. 39.
    Cotruvo JA Jr, Aron AT, Ramos-Torres KM, Chang CJ (2015) Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 44(13):4400–4414. doi: 10.1039/c4cs00346b CrossRefGoogle Scholar
  40. 40.
    Chen Y, Bai Y, Han Z, He W, Guo Z (2015) Photoluminescence imaging of Zn(2+) in living systems. Chem Soc Rev 44(14):4517–4546. doi: 10.1039/c5cs00005j CrossRefGoogle Scholar
  41. 41.
    Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128(1):10–11. doi: 10.1021/ja055064u CrossRefGoogle Scholar
  42. 42.
    Tracey MP, Pham D, Koide K (2015) Fluorometric imaging methods for palladium and platinum and the use of palladium for imaging biomolecules. Chem Soc Rev 44(14):4769–4791. doi: 10.1039/c4cs00323c CrossRefGoogle Scholar
  43. 43.
    Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042. doi: 10.1039/b600562b CrossRefGoogle Scholar
  44. 44.
    Shi DL (2009) Integrated multifunctional nanosystems for medical diagnosis and treatment. Adv Funct Mater 19(21):3356–3373. doi: 10.1002/adfm.200901539 CrossRefGoogle Scholar
  45. 45.
    Yong KT, Roy I, Swihart MT, Prasad PN (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19(27):4655–4672. doi: 10.1039/b817667c CrossRefGoogle Scholar
  46. 46.
    Chen Y, Zhu C, Yang Z, Chen J, He Y, Jiao Y, He W, Qiu L, Cen J, Guo Z (2013) A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angew Chem Int Ed 52(6):1688–1691. doi: 10.1002/anie.201207701 CrossRefGoogle Scholar
  47. 47.
    Bianchi F, Bedini A, Riboni N, Pinalli R, Gregori A, Sidisky L, Dalcanale E, Careri M (2014) Cavitand-based solid-phase microextraction coating for the selective detection of nitroaromatic explosives in air and soil. Anal Chem 86(21):10646–10652. doi: 10.1021/ac5025045 CrossRefGoogle Scholar
  48. 48.
    Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574. doi: 10.1021/acs.chemrev.5b00321 CrossRefGoogle Scholar
  49. 49.
    Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115(19):10575–10636. doi: 10.1021/acs.chemrev.5b00100 CrossRefGoogle Scholar
  50. 50.
    Yang X, Yang M, Pang B, Vara M, Xia Y (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115(19):10410–10488. doi: 10.1021/acs.chemrev.5b00193 CrossRefGoogle Scholar
  51. 51.
    Renna LA, Boyle CJ, Gehan TS, Venkataraman D (2015) Polymer nanoparticle assemblies: a versatile route to functional mesostructures. Macromolecules 48(18):6353–6368. doi: 10.1021/acs.macromol.5b00375 CrossRefGoogle Scholar
  52. 52.
    Mavila S, Eivgi O, Berkovich I, Lemcoff NG (2015) Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles. Chem Rev. doi: 10.1021/acs.chemrev.5b00290 Google Scholar
  53. 53.
    Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115(19):10725–10815. doi: 10.1021/acs.chemrev.5b00091 CrossRefGoogle Scholar
  54. 54.
    Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115(19):10637–10689. doi: 10.1021/acs.chemrev.5b00112 CrossRefGoogle Scholar
  55. 55.
    Prodi L, Rampazzo E, Rastrelli F, Speghini A, Zaccheroni N (2015) Imaging agents based on lanthanide doped nanoparticles. Chem Soc Rev 44(14):4922–4952. doi: 10.1039/c4cs00394b CrossRefGoogle Scholar
  56. 56.
    Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2014) Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 43(12):4243–4268. doi: 10.1039/c3cs60433k CrossRefGoogle Scholar
  57. 57.
    Montalti M, Rampazzo E, Zaccheroni N, Prodi L (2013) Luminescent chemosensors based on silica nanoparticles for the detection of ionic species. New J Chem 37(1):28–34. doi: 10.1039/c2nj40673j CrossRefGoogle Scholar
  58. 58.
    Genovese D, Rampazzo E, Bonacchi S, Montalti M, Zaccheroni N, Prodi L (2014) Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale 6(6):3022–3036. doi: 10.1039/c3nr05599j CrossRefGoogle Scholar
  59. 59.
    Rampazzo E, Voltan R, Petrizza L, Zaccheroni N, Prodi L, Casciano F, Zauli G, Secchiero P (2013) Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. Nanoscale 5(17):7897–7905. doi: 10.1039/c3nr02563b CrossRefGoogle Scholar
  60. 60.
    Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Sgarzi M, Zaccheroni N (2011) Luminescent chemosensors based on silica nanoparticles. Top Curr Chem 300:93–138. doi: 10.1007/128_2010_104 CrossRefGoogle Scholar
  61. 61.
    Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006) Core/shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories. Small 2(6):723–726. doi: 10.1002/smll.200600017 CrossRefGoogle Scholar
  62. 62.
    Wang L, O’Donoghue MB, Tan W (2006) Nanoparticles for multiplex diagnostics and imaging. Nanomedicine (London) 1(4):413–426. doi: 10.2217/17435889.1.4.413 CrossRefGoogle Scholar
  63. 63.
    Rampazzo E, Bonacchi S, Genovese D, Juris R, Montalti M, Paterlini V, Zaccheroni N, Dumas-Verdes C, Clavier G, Méallet-Renault R, Prodi L (2014) Pluronic-silica (PluS) nanoparticles doped with multiple dyes featuring complete energy transfer. J Phys Chem C 118(17):9261–9267. doi: 10.1021/jp501345f CrossRefGoogle Scholar
  64. 64.
    Rampazzo E, Bonacchi S, Genovese D, Juris R, Sgarzi M, Montalti M, Prodi L, Zaccheroni N, Tomaselli G, Gentile S, Satriano C, Rizzarelli E (2011) A versatile strategy for signal amplification based on core/shell silica nanoparticles. Chemistry 17(48):13429–13432. doi: 10.1002/chem.201101851 CrossRefGoogle Scholar
  65. 65.
    Achatz DE, Ali R, Wolfbeis OS (2011) Luminescent chemical sensing, biosensing, and screening using upconverting nanoparticles. Top Curr Chem 300:29–50. doi: 10.1007/128_2010_98 CrossRefGoogle Scholar
  66. 66.
    Genovese D, Bonacchi S, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2013) Prevention of self-quenching in fluorescent silica nanoparticles by efficient energy transfer. Angew Chem Int Ed 52(23):5965–5968. doi: 10.1002/anie.201301155 CrossRefGoogle Scholar
  67. 67.
    Zhu S, Fischer T, Wan W, Descalzo AB, Rurack K (2011) Luminescence amplification strategies integrated with microparticle and nanoparticle platforms. Top Curr Chem 300:51–91. doi: 10.1007/128_2010_99 CrossRefGoogle Scholar
  68. 68.
    Brasola E, Mancin F, Rampazzo E, Tecilla P, Tonellato U (2003) A fluorescence nanosensor for Cu2+ on silica particles. Chem Commun 24:3026–3027. doi: 10.1039/b310582b CrossRefGoogle Scholar
  69. 69.
    Rampazzo E, Brasola E, Marcuz S, Mancin F, Tecilla P, Tonellato U (2005) Surface modification of silica nanoparticles: a new strategy for the realization of self-organized fluorescence chemosensors. J Mater Chem 15(27–28):2687–2696. doi: 10.1039/b502052b CrossRefGoogle Scholar
  70. 70.
    Mancin F, Rampazzo E, Tecilla P, Tonellato U (2006) Self-assembled fluorescent chemosensors. Chemistry - A European Journal 12(7):1844–1854. doi: 10.1002/chem.200500549 CrossRefGoogle Scholar
  71. 71.
    Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Self-organized fluorescent nanosensors for ratiometric Pb2+ detection. Langmuir 23(16):8632–8636. doi: 10.1021/la700971n CrossRefGoogle Scholar
  72. 72.
    Bonacchi S, Rampazzo E, Montalti M, Prodi L, Zaccheroni N, Mancin F, Teolato P (2008) Amplified fluorescence response of chemosensors grafted onto silica nanoparticles. Langmuir 24(15):8387–8392. doi: 10.1021/la800753f CrossRefGoogle Scholar
  73. 73.
    Arca M, Caltagirone C, De Filippo G, Formica M, Fusi V, Giorgi L, Lippolis V, Prodi L, Rampazzo E, Scorciapino MA, Sgarzi M, Zaccheroni N (2014) A fluorescent ratiometric nanosized system for the determination of PdII in water. Chem Commun 50(96):15259–15262. doi: 10.1039/c4cc07969h CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nelsi Zaccheroni
    • 1
    Email author
  • Francesco Palomba
    • 1
  • Enrico Rampazzo
    • 1
  1. 1.Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaBolognaItaly

Personalised recommendations