Advertisement

Supramolecular Artificial Photosynthesis

  • Mirco NataliEmail author
  • Franco Scandola
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)

Abstract

The conversion of light energy into chemical fuels by artificial means is a challenging goal of modern science, of great potential impact on long-term energy and environmental problems. As such, Artificial Photosynthesis is one of the most active research areas in applied photochemistry. In this tutorial review the basic ingredients of a biomimetic, supramolecular approach to Artificial Photosynthesis are outlined. First, a brief summary of the relevant structural-functional aspects of natural photosynthesis is provided, as a guide to plausible artificial architectures. Then, candidate energy converting reactions are examined, focusing attention on water splitting. The main functional units of an artificial photosynthetic system are dealt with in some detail, namely, charge separation systems, light harvesting antenna systems, water oxidation catalysts, and hydrogen evolving catalysts. For each type of system, design principles and mechanistic aspects are highlighted with specifically selected examples. Some attempts at integrating the various units into light-to-fuels converting devices are finally discussed. Throughout the review, the emphasis is on systems of molecular and supramolecular nature.

Keywords

Hydrogen Evolution Electron Transfer Process Water Oxidation Photoinduced Electron Transfer Reorganization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support from the Italian MIUR (FIRB RBAP11C58Y “NanoSolar”, PRIN 2010 “Hi-Phuture”), and COST action CM1202 “PERSPECT-H2O” is gratefully acknowledged.

References

  1. 1.
    Blankenship RA (2002) Molecular mechanisms of photosynthesis. Blackwell, OxfordCrossRefGoogle Scholar
  2. 2.
    (a) Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Nature 318:618; (b) Deisenhofer J, Epp O, Sinning I, Michel H (1995) J Mol Biol 246:429Google Scholar
  3. 3.
    Gunner MR (1991) The reaction center protein from purple bacteria: structure and function. In: Lee CP (ed) Current topics in bioenergetics, vol 16. Academic, San DiegoGoogle Scholar
  4. 4.
    McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz M, Cogdell RJ, Isaacs NW (1995) Nature 374:517CrossRefGoogle Scholar
  5. 5.
    Polli D, Cerullo G, Lanzani G, De Silvestri S, Hashimoto H, Cogdell RJ (2006) Biophys J 90:2486CrossRefGoogle Scholar
  6. 6.
    Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW (2004) Photosynth Res 81:207CrossRefGoogle Scholar
  7. 7.
    Sundström V, Pullerits T, van Grondelle R (1999) J Phys Chem B 103:2327CrossRefGoogle Scholar
  8. 8.
    (a) Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Science 302:1969; (b) Niwa S, Yu LJ, Takeda K, Hirano Y, Kawakami T, Wang-Otomo ZY, Miki K (2014) Nature 508:228Google Scholar
  9. 9.
    Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN (2004) Nature 430:1058CrossRefGoogle Scholar
  10. 10.
    Müh F, Glöckner C, Hellmich J, Zouni A (2012) Biochim Biophys Acta 1817:44CrossRefGoogle Scholar
  11. 11.
    Kok B, Forbush B, McGloin M (1970) Photochem Photobiol 11:457CrossRefGoogle Scholar
  12. 12.
    Grundmeier A, Dau H (2012) Biophys Biochim Acta 1817:88CrossRefGoogle Scholar
  13. 13.
    Vinyard DJ, Khan S, Brudvig GW (2015) Faraday Disc 185:37CrossRefGoogle Scholar
  14. 14.
    (a) Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krau N (2001) Nature 411:909; (b) Amunts A, Drory O, Nelson N (2007) Nature 447:58Google Scholar
  15. 15.
    (a) Nield J, Barber J (2006) Biochim Biophys Acta 1757:353; (b) Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Nature 473:55; (c) Kawakami K, Umena Y, Kamiya N, Shen JR (2011) J Photochem Photobiol B 104:9Google Scholar
  16. 16.
    Qin X, Suga M, Kuang T, Shen JR (2015) Science 348:989CrossRefGoogle Scholar
  17. 17.
    Wientjes E, van Amerongen H, Croce R (2013) Biochim Biophys Acta 1827:420CrossRefGoogle Scholar
  18. 18.
    Minagawa J (2011) Biochim Biophys Acta 1807:897CrossRefGoogle Scholar
  19. 19.
    (a) Huynh MHV, Meyer TJ (2007) Chem Rev 107:5004; (b) Gust D, Moore TA, Moore AL (2009) Acc Chem Res 42:1890.Google Scholar
  20. 20.
    (a) Yandulov DV, Schrock RR (2003) Science 301:76; (b) Ritleng V, Yandulov DV, Weare WW, Schrock RR, Hock AS, Davis WM (2004) J Am Chem Soc 126:6150Google Scholar
  21. 21.
    Schneider J, Jia H, Muckerman JT, Fujita E (2012) Chem Soc Rev 41:2036CrossRefGoogle Scholar
  22. 22.
    Sahara G, Ishitani O (2015) Inorg Chem 54:5096CrossRefGoogle Scholar
  23. 23.
    Morris AJ, Meyer GJ, Fujita E (2009) Acc Chem Res 42:1983CrossRefGoogle Scholar
  24. 24.
    Wang WH, Hull JF, Muckerman JT, Fujita E, Himeda Y (2012) Energy Environ Sci 5:7923CrossRefGoogle Scholar
  25. 25.
    Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colon B, Way JC, Silver PA, Nocera DG (2015) Proc Natl Acad Sci U S A 112:2337CrossRefGoogle Scholar
  26. 26.
    Marcus RA, Sutin N (1985) Biochem Biophys Acta 811:265Google Scholar
  27. 27.
    More elaborate models, that treat the nuclear motions quantum mechanically, are available [e.g., (a) Kestner NR, Logan J, Jortner J (1974) J Phys Chem 78:2148; (b) Jortner J (1976) J Chem Phys 64:4860; (c) Ulstrup J, Jortner J (1975) J Chem Phys 63:4358]. The main predictions on the dependence of rates on driving force and reorganization energies are, however, qualitatively the same as those of the classical Marcus modelGoogle Scholar
  28. 28.
    Electronic factors depend on the nature and energy of the orbitals involved in donor, acceptor, and bridging linkages. Therefore, they can be different, in principle, for charge separation and charge recombination. For a more detailed treatment of this complex topic see ref. [29]Google Scholar
  29. 29.
    Natali M, Campagna S, Scandola F (2014) Chem Soc Rev 43:4005CrossRefGoogle Scholar
  30. 30.
    Kuciauskas D, Liddell PA, Hung SC, Lin S, Stone S, Seely GR, Moore AL, Moore TA, Gust D (1997) J Phys Chem B 101:429CrossRefGoogle Scholar
  31. 31.
    Kuciauskas D, Liddell PA, Lin S, Stone S, Moore AL, Moore TA, Gust D (2000) J Phys Chem B 104:4307CrossRefGoogle Scholar
  32. 32.
    Imahori H, Hagiwara K, Aoki M, Akiyama T, Taniguchi S, Okada T, Shirakawa M, Sakata Y (1996) J Am Chem Soc 118:11771CrossRefGoogle Scholar
  33. 33.
    Moore TA, Gust D, Mathis P, Mialocq JC, Chachaty C, Bensasson RV, Land EJ, Doizi D, Liddell PA, Lehman WR, Nemeth GA, Moore AL (1984) Nature 307:630CrossRefGoogle Scholar
  34. 34.
    Gust D, Moore TA, Moore AL (2001) Acc Chem Res 34:40CrossRefGoogle Scholar
  35. 35.
    Wasielewski MR (1992) Chem Rev 92:435CrossRefGoogle Scholar
  36. 36.
    Wasielewski MR (2006) J Org Chem 71:5051CrossRefGoogle Scholar
  37. 37.
    (a) Paddon-Row MN (2001) Electron Transfer in Chemistry, vol III. In: Balzani V (ed). Wiley-VCH, Weinheim. Chapter 2.1. p 179; (b) Albinsson B, Martensson J (2008) J Photochem Photobiol C 9:138Google Scholar
  38. 38.
    Imahori H, Guldi DM, Tamaki K, Yoshida Y, Luo C, Sakata Y, Fukuzumi S (2001) J Am Chem Soc 123:6617CrossRefGoogle Scholar
  39. 39.
    Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H (2004) J Am Chem Soc 126:1600CrossRefGoogle Scholar
  40. 40.
    (a) Benniston AC, Harriman A, Li P, Rostron JP, Verhoeven JW (2005) Chem Commun 2701; (b) Benniston AC, Harriman A, Li P, Rostron JP, van Ramesdonk HJ, Groeneveld MM, Zhang H, Verhoeven JW (2005) J Am Chem Soc 127:16054Google Scholar
  41. 41.
    Fukuzumi S, Ohkubo K, Suenobu T (2014) Acc Chem Res 47:1455CrossRefGoogle Scholar
  42. 42.
    (a) Danielson E, Elliott CM, Merkert JW, Meyer TJ (1987) J Am Chem Soc 109:2519; (b) Larson SL, Elliott CM, Kelley DF (1995) J Phys Chem 99:6530; (c) Rawls MT, Kollmannsberger G, Elliott CM, Steiner UE (2007) J Phys Chem A 111:3485Google Scholar
  43. 43.
    Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes. Academic, LondonGoogle Scholar
  44. 44.
    (a) Sauvage JP, Collin JP, Chambron JC, Guilleraz S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L (1994) Chem Rev 94:993; (b) Harriman A, Odobel F, Sauvage JP (1994) J Am Chem Soc 116:5481; (c) Flamigni L, Barigelletti F, Armaroli N, Collin JP, Dixon IM, Sauvage JP, Williams JAG (1999) Coord Chem Rev 190–192:671; (d) Baranoff E, Collin JP, Flamigni L, Sauvage JP (2004) Chem Soc Rev 33:147Google Scholar
  45. 45.
    Borgström M, Shaikh N, Johansson O, Anderlund MF, Styring S, Akermark B, Magnuson A, Hammarström L (2005) J Am Chem Soc 127:17504CrossRefGoogle Scholar
  46. 46.
    Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V (2007) Top Curr Chem 280:117CrossRefGoogle Scholar
  47. 47.
    Iengo E, Pantoş DG, Sanders JKM, Orlandi M, Chiorboli C, Fracasso S, Scandola F (2011) Chem Sci 2:676CrossRefGoogle Scholar
  48. 48.
    Anderson S, Anderson HL, Bashall A, McPartlin M, Sanders JKM (1995) Angew Chem Int Ed Engl 34:1096CrossRefGoogle Scholar
  49. 49.
    Imahori H (2004) J Phys Chem B 108:6130CrossRefGoogle Scholar
  50. 50.
    Scandola F, Chiorboli C, Prodi A, Iengo E, Alessio E (2006) Coord Chem Rev 250:1471CrossRefGoogle Scholar
  51. 51.
    Kobuke Y (2006) Eur J Inorg Chem 2006: 2333Google Scholar
  52. 52.
    Aratani N, Kim D, Osuka A (2009) Acc Chem Res 42:1922CrossRefGoogle Scholar
  53. 53.
    Kim D (2012) Multiporphyrin arrays: fundamentals and applications, Ed. CRC Press, Boca RatonGoogle Scholar
  54. 54.
    Aratani N, Osuka A, Kim YH, Jeong DH, Kim D (2000) Angew Chem Int Ed 39:1458CrossRefGoogle Scholar
  55. 55.
    Aratani N, Cho HS, Ahn TK, Cho S, Kim D, Sumi H, Osuka A (2003) J Am Chem Soc 125:9668CrossRefGoogle Scholar
  56. 56.
    (a) Hwang IW, Ko DM, Ahn TK, Yoon ZS, Kim D, Peng X, Aratani N, Osuka A (2005) J Phys Chem B 109:8643. (b) Hori T, Aratani N, Takagi A, Matsumoto T, Kawai T, Yoon MC, Yoon ZS, Cho S, Kim D, Osuka A (2006) Chem Eur J 12:1319Google Scholar
  57. 57.
    Lin VSY, Therien MJ (1995) Chem Eur J 1:645CrossRefGoogle Scholar
  58. 58.
    Taylor PN, Huuskonen J, Rumbles G, Aplin RT, Williams E, Anderson HL (1998) Chem Commun 909Google Scholar
  59. 59.
    (a) Hoffmann M, Wilson CJ, Odell B, Anderson HL (2007) Angew Chem Int Ed 46:3122. (b) Hoffmann M, Kärnbratt J, Chang MH, Herz LM, Albinsson B, Anderson HL (2008) Angew Chem Int Ed 47:4993Google Scholar
  60. 60.
    O’Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TDW, Saywell A, Blunt MO, O’Shea JN, Beton PH, Malfois M, Anderson HL (2011) Nature 469:72CrossRefGoogle Scholar
  61. 61.
    Benites MR, Johnson TE, Weghorn S, Yu L, Rao PD, Diers JR, Yang SI, Kirmaier C, Bocian DF, Holten D, Lindsey JS (2002) J Mater Chem 12:65CrossRefGoogle Scholar
  62. 62.
    (a) Serroni S, Campagna S, Puntoriero F, Di Pietro C, McClenaghan ND, Loiseau F (2001) Chem Soc Rev 30:367; (b) Balzani V, Ceroni P, Juris A, Venturi M, Campagna S, Puntoriero F, Serroni S (2001) Coord Chem Rev 219–221:545Google Scholar
  63. 63.
    Berglund-Baudin H, Davidsson J, Serroni S, Juris A, Balzani V, Campagna S, Hammarström L (2002) J Phys Chem A 106:4312CrossRefGoogle Scholar
  64. 64.
    Iengo E, Scandola F, Alessio E (2006) Struct Bond 121:105CrossRefGoogle Scholar
  65. 65.
    Takahashi R, Kobuke Y (2003) J Am Chem Soc 125:2372CrossRefGoogle Scholar
  66. 66.
    Hwang IW, Ko DM, Ahn TK, Kim D, Ito F, Ishibashi Y, Khan SR, Nagasawa Y, Miyasaka H, Ikeda C, Takahashi R, Ogawa K, Satake A, Kobuke Y (2005) Chem Eur J 11:3753CrossRefGoogle Scholar
  67. 67.
    Iengo E, Zangrando E, Minatel R, Alessio E (2002) J Am Chem Soc 124:1003CrossRefGoogle Scholar
  68. 68.
    Prodi A, Chiorboli C, Scandola F, Iengo E, Alessio E (2006) ChemPhysChem 7:1514CrossRefGoogle Scholar
  69. 69.
    Indelli MT, Chiorboli C, Scandola F, Iengo E, Osswald P, Würthner F (2010) J Phys Chem B 114:14495CrossRefGoogle Scholar
  70. 70.
    Kodis G, Liddell PA, de la Garza L, Clausen PC, Lindsey JS, Moore AL, Moore TA, Gust D (2002) J Phys Chem A 106:2036CrossRefGoogle Scholar
  71. 71.
    Terazono Y, Kodis G, Liddell PA, Garg V, Moore TA, Moore AL, Gust D (2009) J Phys Chem B 113:7147CrossRefGoogle Scholar
  72. 72.
    Kuramochi Y, Sandanayaka ASD, Satake A, Araki Y, Ogawa K, Ito O, Kobuke Y (2009) Chem Eur J 15:2317CrossRefGoogle Scholar
  73. 73.
    Ravotto L, Mazzaro R, Natali M, Ortolani L, Morandi V, Ceroni P, Bergamini G (2014) J Phys Chem Lett 5:798CrossRefGoogle Scholar
  74. 74.
    (a) Kanan M, Nocera DG (2008) Science 321:1072; (b) Dinca M, Surendranath Y, Nocera DG (2010) Proc Natl Acad Sci USA 107:10337; c) Huynh M, Bediako DK, Nocera DG (2014) J Am Chem Soc 136:6002Google Scholar
  75. 75.
    Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Science 340:60CrossRefGoogle Scholar
  76. 76.
    (a) Morris ND, Suzuki M, Mallouk TE (2004) J Phys Chem A 108:9115; (b) Hoertz PG, Kim YI, Youngblood WJ, Mallouk TE (2007) J Phys Chem B 111:6845Google Scholar
  77. 77.
    Piccinin S, Sartorel A, Aquilanti G, Goldoni A, Bonchio M, Fabris S (2013) Proc Natl Acad Sci U S A 110:4917CrossRefGoogle Scholar
  78. 78.
    Gagliardi AK, Vannucci A, Concepcion JJ, Chen Z, Meyer TJ (2012) Energy Environ Sci 5:7704CrossRefGoogle Scholar
  79. 79.
    Betley TA, Wu Q, van Voohris T, Nocera DG (2008) Inorg Chem 47:1849CrossRefGoogle Scholar
  80. 80.
    Sartorel A, Bonchio M, Campagna S, Scandola F (2013) Chem Soc Rev 42:2262CrossRefGoogle Scholar
  81. 81.
    (a) Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, Stoll T, Llobet A (2014) Chem Soc Rev 43:7501; (b) Sala X, Maji S, Bofill R, Garcia-Anton J, Escriche L, Llobet A (2014) Acc Chem Res 47:504Google Scholar
  82. 82.
    Kärkäs MD, Verho O, Johnston EV, Åkermark B (2014) Chem Rev 114:11863CrossRefGoogle Scholar
  83. 83.
    Blakemore JD, Crabtree RH, Brudvig GW (2015) Chem Rev 115:12974CrossRefGoogle Scholar
  84. 84.
    Geletii YV, Botar B, Kögerler P, Hillesheim DA, Musaev DG, Hill CL (2008) Angew Chem Int Ed 47:3896CrossRefGoogle Scholar
  85. 85.
    Sartorel A, Carraro M, Scorrano G, De Zorzi R, Geremia S, McDaniel ND, Bernhard S, Bonchio M (2008) J Am Chem Soc 130:5006CrossRefGoogle Scholar
  86. 86.
    Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, Maccato C, Rapino S, Rodriguez Gonzalez B, Amenitsch H, Da Ros T, Casalis L, Goldoni A, Marcaccio M, Scorrano G, Scoles G, Paolucci F, Prato M, Bonchio M (2010) Nat Chem 2:826CrossRefGoogle Scholar
  87. 87.
    Quintana M, Montallano Lopez A, Rapino S, Toma FM, Iurlo M, Carraro M, Sartorel A, Maccato C, Ke X, Bittencourt G, Da Ros T, Van Tendeloo G, Marcaccio M, Paolucci F, Prato M, Bonchio M (2013) ACS Nano 7:811CrossRefGoogle Scholar
  88. 88.
    Sartorel A, Mirò P, Salvadori E, Romain S, Carraro M, Scorrano G, Di Valentin M, Llobet A, Bo C, Bonchio M (2009) J Am Chem Soc 131:16051CrossRefGoogle Scholar
  89. 89.
    Geletii YV, Besson C, Hou Y, Yin Q, Musaev DG, Quinoñero D, Cao R, Hardcastle KI, Proust A, Kögerler P, Hill CL (2009) J Am Chem Soc 131:17360CrossRefGoogle Scholar
  90. 90.
    Geletii YV, Huang Z, Hou Y, Musaev DG, Lian T, Hill CL (2009) J Am Chem Soc 131:7522CrossRefGoogle Scholar
  91. 91.
    Puntoriero F, La Ganga G, Sartorel A, Carraro M, Scorrano G, Bonchio M, Campagna S (2010) Chem Commun 46:4725CrossRefGoogle Scholar
  92. 92.
    Natali M, Orlandi M, Berardi S, Campagna S, Bonchio M, Sartorel A, Scandola F (2012) Inorg Chem 51:7324CrossRefGoogle Scholar
  93. 93.
    Natali M, Puntoriero F, Chiorboli C, La Ganga G, Sartorel A, Bonchio M, Campagna S, Scandola F (2015) J Phys Chem C 119:2371CrossRefGoogle Scholar
  94. 94.
    Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) Science 328:342CrossRefGoogle Scholar
  95. 95.
    Huang Z, Luo Z, Geletii YV, Vickers JM, Yin Q, Wu D, Hou Y, Ding Y, Song J, Musaev DG, Hill CL, Lian T (2011) J Am Chem Soc 133:2068CrossRefGoogle Scholar
  96. 96.
    Vickers JM, Lv H, Sumliner JM, Zhu G, Luo Z, Musaev DG, Geletii YV, Hill CL (2013) J Am Chem Soc 135:14110CrossRefGoogle Scholar
  97. 97.
    (a) Stracke JJ, Finke RG (2011) J Am Chem Soc 133:14872; (b) Stracke JJ, Finke RG (2013) ACS Catal 3:1209; c) Stracke JJ, Finke RG (2014) ACS Catal 4:79Google Scholar
  98. 98.
    Natali M, Berardi S, Sartorel A, Bonchio M, Campagna S, Scandola F (2012) Chem Commun 48:8808CrossRefGoogle Scholar
  99. 99.
    (a) Gersten SW, Samuels GJ, Meyer TJ (1982) J Am Chem Soc 104:4029; (b) Gilbert JA, Egglestone DS, Murphy Jr WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107:3855Google Scholar
  100. 100.
    Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) J Am Chem Soc 130:16462CrossRefGoogle Scholar
  101. 101.
    Concepcion JJ, Jurss JW, Norris MR, Chen Z, Templeton JL, Meyer TJ (2010) Inorg Chem 49:1277CrossRefGoogle Scholar
  102. 102.
    Duan L, Fischer A, Xu Y, Sun L (2009) J Am Chem Soc 131:10397CrossRefGoogle Scholar
  103. 103.
    Duan L, Xu Y, Zhang P, Wang M, Sun L (2010) Inorg Chem 49:209CrossRefGoogle Scholar
  104. 104.
    Li F, Jiang Y, Zhang B, Huang F, Gao Y, Sun L (2012) Angew Chem Int Ed 51:2417CrossRefGoogle Scholar
  105. 105.
    Nakazono T, Parent AR, Sakai K (2013) Chem Commun 49:6325CrossRefGoogle Scholar
  106. 106.
    Pizzolato E, Natali M, Posocco B, Montellano Lòpez A, Bazzan I, Di Valentin M, Galloni P, Conte V, Bonchio M, Scandola F, Sartorel A (2013) Chem Commun 49:9941CrossRefGoogle Scholar
  107. 107.
    Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Acc Chem Res 42:1995CrossRefGoogle Scholar
  108. 108.
    Ozawa H, Sakai K (2011) Chem Commun 47:2227CrossRefGoogle Scholar
  109. 109.
    (a) Schulz M, Karnahl M, Schwalbe M, Vos JG (2012) Coord Chem Rev 256:1682; (b) Alpin Y, Pryce MT, Rau S, Dini D, Vos JG (2013) Dalton Trans 42:16243Google Scholar
  110. 110.
    Stoll T, Gennari M, Serrano I, Fortage J, Chauvin J, Odobel F, Rebarz M, Poizat O, Sliwa M, Deronzier A, Collomb MN (2013) Chem Eur J 19:782CrossRefGoogle Scholar
  111. 111.
    (a) Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem Int Ed 50:7238; (b) Eckenhoff WT, McNamara WR, Du P, Eisenberg R (2013) Biochim Biophys Acta 1827:958Google Scholar
  112. 112.
    DuBois DL (2014) Inorg Chem 53:3935CrossRefGoogle Scholar
  113. 113.
    (a) Tard C, Pickett CJ (2009) Chem Rev 109:2245; (b) Lomoth R, Ott S (2009) Dalton Trans 9952Google Scholar
  114. 114.
    Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V (2011) Photochem Photobiol 87:946CrossRefGoogle Scholar
  115. 115.
    (a) Eckenhoff WT, Eisenberg R (2012) Dalton Trans 41:13004; (b) Du P, Eisenberg R (2012) Energy Environ Sci 5:6012; c) Han Z, Eisenberg R (2014) Acc Chem Res 47:2537Google Scholar
  116. 116.
    (a) McKone JR, Marinescu SC, Brunschwig BS, Winkler JR, Gray HB (2014) Chem Sci 5:965; (b) Thoi VS, Sun Y, Long JR, Chang CJ (2013) Chem Soc Rev 42:2388Google Scholar
  117. 117.
    Losse S, Vos JG, Rau S (2010) Coord Chem Rev 254:2049CrossRefGoogle Scholar
  118. 118.
    Ladomenou K, Natali M, Iengo E, Charalambidis G, Scandola F, Coutsolelos AG (2015) Coord Chem Rev 304–305:38CrossRefGoogle Scholar
  119. 119.
    (a) Zee DZ, Chantarojsiri T, Long JR, Chang CJ (2015) Acc Chem Res 48:2027; (b) Queyriaux N, Jane RT, Massin J, Artero V, Chavarot-Kerlidou M (2015) Coord Chem Rev 304–305:3Google Scholar
  120. 120.
    Streich D, Astuti Y, Orlandi M, Schwartz L, Lomoth R, Hammarström L, Ott S (2010) Chem Eur J 16:60CrossRefGoogle Scholar
  121. 121.
    (a) Ott S, Borgström M, Kritikos M, Lomoth R, Bergquist J, Åkermark B, Hammarström L, Sun L (2004) Inorg Chem 43:4683; (b) Ekström J, Abrahamsson M, Olson C, Bergquist J, Kaynak FB, Eriksson L, Sun L, Becker HC, Åkermark B, Hammarström L, Ott S (2006) Dalton Trans 4599Google Scholar
  122. 122.
    (a) Li X, Wang M, Zhang S, Pan J, Na Y, Liu J, Åkermark B, Sun L (2008) J Phys Chem B 112:8198; (b) Song LC, Wang LX, Tang MY, Li CG, Song HB, Hu QM (2009) Organometallics 28:3834Google Scholar
  123. 123.
    Yu T, Zeng Y, Chen J, Li YY, Yang G, Li Y (2013) Angew Chem Int Ed 52:5631CrossRefGoogle Scholar
  124. 124.
    (a) Chao TH, Espenson JH (1978) J Am Chem Soc 100:129; (b) Connolly P, Espenson JH (1986) Inorg Chem 25:2684Google Scholar
  125. 125.
    Razavet M, Artero V, Fontecave M (2005) Inorg Chem 44:4786CrossRefGoogle Scholar
  126. 126.
    (a) Hawecker J, Lehn JM, Ziessel R (1983) New J Chem 7:271; (b) Deponti E, Natali M (2016) Dalton Trans doi:10.1039/c6dt01221cGoogle Scholar
  127. 127.
    Probst B, Roderberg A, Guttentag M, Hamm P, Alberto R (2011) Inorg Chem 49:6453CrossRefGoogle Scholar
  128. 128.
    (a) Du P, Knowles K, Eisenberg R (2008) J Am Chem Soc 130:12576; (b) Wang X, Goeb S, Ji Z, Pogulaichenko NA, Castellano FN (2011) Inorg Chem 50:705Google Scholar
  129. 129.
    Khnayzer RS, McCusker CE, Olaiya BS, Castellano FN (2013) J Am Chem Soc 135:14068CrossRefGoogle Scholar
  130. 130.
    (a) Lazarides T, McCormick TM, Du P, Luo G, Lindley B, Eisenberg R (2009) J Am Chem Soc 131:9192; (b) Zhang P, Wang M, Dong J, Li X, Wang F, Wu L, Sun L (2010) J Phys Chem C 114:15868Google Scholar
  131. 131.
    Lazarides T, Delor M, Sazanovich IV, McCormick TM, Georgakaki I, Charalambidis G, Weinstein JA, Coutsolelos AG (2014) Chem Commun 50:521CrossRefGoogle Scholar
  132. 132.
    Fihri A, Artero V, Razavet M, Baffert C, Leibl W, Fontecave M (2008) Angew Chem Int Ed 47:564CrossRefGoogle Scholar
  133. 133.
    (a) Natali M, Argazzi R, Chiorboli C, Iengo E, Scandola F (2013) Chem Eur J 19:9261; (b) Natali M, Orlandi M, Chiorboli C, Iengo E, Bertolasi V, Scandola F (2013) Photochem Photobiol Sci 12:1749Google Scholar
  134. 134.
    (a) Zhang P, Wang M, Li C, Li X, Dong J, Sun L (2010) Chem Commun 46:8806; (b) Peuntinger K, Lazarides T, Dafnomili D, Charalambidis G, Landrou G, Kahnt A, Sabatini RP, McCamant DW, Gryko DT, Coutsolelos AG, Guldi DM (2013) J Phys Chem C 117:1647; (c) Manton JC, Long C, Vos JG, Pryce MT (2014) Dalton Trans 43:3576Google Scholar
  135. 135.
    (a) Lakadamyali F, Reisner E (2011) Chem Commun 47:1695; (b) Lakadamyali F, Reynal A, Kato M, Durrant JR, Reisner E (2012) Chem Eur J 18:15464Google Scholar
  136. 136.
    Khnayzer RS, Thoi VS, Nippe M, King AE, Jurss JW, El Roz KA, Long JR, Chang CJ, Castellano FN (2014) Energy Environ Sci 7:1477CrossRefGoogle Scholar
  137. 137.
    Helm ML, Stewart MP, Bullock RM, Rakowski DuBois M, DuBois DL (2011) Science 333:863CrossRefGoogle Scholar
  138. 138.
    McLaughlin MP, McCormick TM, Eisenberg R, Holland PL (2011) Chem Commun 47:7989CrossRefGoogle Scholar
  139. 139.
    Weingarten AS, Kazantsev RV, Palmer LC, McClendon M, Koltonow AR, Samuel APS, Kiebala DJ, Wasielewski MR, Stupp SI (2014) Nat Chem 6:964CrossRefGoogle Scholar
  140. 140.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  141. 141.
    O’Regan B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  142. 142.
    (a) Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595; (b) Bignozzi CA, Argazzi R, Kleverlaan CJ (2000) Chem Soc Rev 29:87Google Scholar
  143. 143.
    Odobel F, Le Pleux L, Pellegrin Y, Blart E (2010) Acc Chem Res 43:1063CrossRefGoogle Scholar
  144. 144.
    Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) J Am Chem Soc 131:926CrossRefGoogle Scholar
  145. 145.
    Zhao Y, Swierk JR, Megiatto JD, Sherman B, Youngblood WJ, Qin D, Lentz DM, Moore AL, Moore TA, Gust D, Mallouk TE (2012) Proc Natl Acad Sci U S A 109:15612CrossRefGoogle Scholar
  146. 146.
    (a) Alibabaei L, Brennaman MK, Norris MR, Kalanyan B, Song M, Losego MD, Concepcion JJ, Binstead RA, Parsons GN, Meyer TJ (2013) Proc Natl Acad Sci U S A 110:20008; (b) Ashford DL, Gish MK, Vannucci AK, Brennaman MK, Templeton JL, Papanikolas JM, Meyer TJ (2015) Chem Rev 115:13006Google Scholar
  147. 147.
    Gao Y, Ding X, Liu J, Wang L, Lu Z, Li L, Sun L (2013) J Am Chem Soc 135:4219CrossRefGoogle Scholar
  148. 148.
    Gao Y, Zhang L, Ding X, Sun L (2014) Phys Chem Chem Phys 16:12008CrossRefGoogle Scholar
  149. 149.
    Li L, Duan L, Wen F, Li C, Wang M, Hagfeldt A, Sun L (2012) Chem Commun 48:988CrossRefGoogle Scholar
  150. 150.
    Ji Z, He M, Huang Z, Ozkan U, Wu Y (2013) J Am Chem Soc 135:11696CrossRefGoogle Scholar
  151. 151.
    Fan K, Li F, Wang L, Daniel Q, Gabrielsson E, Sun L (2014) Phys Chem Chem Phys 16:25234CrossRefGoogle Scholar
  152. 152.
    Li F, Fan K, Xu B, Gabrielsson E, Daniel Q, Li L, Sun L (2015) J Am Chem Soc 137:9153CrossRefGoogle Scholar
  153. 153.
    Ager JW, Shaner MR, Walczak KA, Sharp ID, Ardo S (2015) Energy Environ Sci 8:2811, and references thereinCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, and Centro Interuniversitario per la Conversione Chimica dell’Energia Solare (SOLARCHEM), sezione di FerraraFerraraItaly

Personalised recommendations