Decentralised Hierarchical Multi-rate Control of Large-Scale Drinking Water Networks

  • Ajay Kumar Sampathirao
  • Pantelis SopasakisEmail author
  • Alberto Bemporad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8985)


We propose a decentralised hierarchical multi-rate control scheme for the control of large-scale systems with state and input constraints. The large-scale system is partitioned into sub-systems each one of which is locally controlled by a stabilising linear controller which does not account for the prescribed constraints. A higher-layer controller commands reference signals at a lower uniform sampling frequency so as to enforce linear constraints on the process variables. Worst-case subsystem interactions are modeled and accounted for in a robust manner. By optimally constraining the magnitude and rate of variation of the reference signals to each lower-layer controller we prove that closed-loop stability is preserved and the fulfillment of the prescribed constraints is guaranteed. We apply the proposed methodology to Johansson’s quadraple-tank system and we compare it to a centralised control approach.


Multi-rate Control Drinking Water Network (DWNs) Lower-layer Controller (LLC) Centralized Control Approach Reference Command Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jamshidi, M., Meyers, R.A.: Controls, Large-Scale Systems, Encyclopedia of Physical Science and Technology, 3rd edn, pp. 675–686. Academic Press, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Findeisen, W., Bailey, F.N., Brdys, M., Malinowski, K., Tatjewski, P., Wozniak, A.: Control and Coordination in Hierarchical Systems. IIASA International Series, vol. 9. Wiley, Chichester (1980)zbMATHGoogle Scholar
  3. 3.
    Ishii, T., Yasuda, K.: Hierarchical decentralised autonomous control in super-distributed energy systems. IEEE Trans. Electr. Electron. Eng. 2(1), 63–71 (2007)CrossRefGoogle Scholar
  4. 4.
    Scattolini, R.: Architectures for distributed and hierarchical model predictive control - a review. J. Process Control 19, 723–731 (2009)CrossRefGoogle Scholar
  5. 5.
    Bakule, L.: Decentralised control: an overview. Ann. Rev. Control 32(1), 87–98 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ocampo-Martinez, C., Puig, V., Bovo, S.: Decentralised MPC based on a graph partitioning approach applied to the Barcelona drinking water network. In: Proceedings of 18th IFAC World Congress, pp. 1577–1583, Milano (2011)Google Scholar
  7. 7.
    Ocampo-Martinez, C., Barcelli, D., Puig, V., Bemporad, A.: Hierarchical and decentralised model predictive control of drinking water networks: application to Barcelona case study. IET Control Theor. Appl. 6(1), 62–71 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sampathirao, A.K., Grosso, J.M., Sopasakis, P., Ocampo-Martinez, C., Bemporad, A., Puig, V.: Water demand forecasting for the optimal operation of large-scale drinking water networks: The Barcelona Case Study. In: 19th IFAC World Congress, pp. 10457–10462, Cape Town (2014)Google Scholar
  9. 9.
    Angeli, M., Amrit, R., Rawlings, J.B.: On average performance and stability of economic model predictive control. IEEE Trans. Auto. Cont. 57(7), 1615–1626 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gilbert, E.G., Kolmanovsky, I.: Fast reference governors for systems with state and control constraints and disturbance inputs. Int. J. Robust Nonlinear Control. 9(15), 1117–1141 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kalabić, U.V., Kolmanovsky, I.V.: Decentralised constraint enforcement using reference governors. In: 52nd IEEE Conference on Decision and Control, pp. 6415–6421, Firenze (2013)Google Scholar
  12. 12.
    Scattolini, R., Schiavoni, N.: A multirate model based predictive controller. IEEE Trans. Aut. Contr. 40(6), 1093–1097 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Picasso, B., De Vito, D., Scattolini, R., Colaneri, P.: An MPC approach to the design of two-layer hierarchical control systems. Automatica 46(5), 823–831 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Heidarinejad, M., Liu, L., de la Peña, D.M., Davis, J.F., Christofides, P.D.: Multirate Lyapunov-based distributed model predictive control of nonlinear uncertain systems. J. Process Control 21(9), 1231–1242 (2011)CrossRefGoogle Scholar
  15. 15.
    Barcelli, D., Bemporad, A., Ripaccioli, G.: Hierarchical multi-rate control design for constrained linear systems. In: 49th IEEE Conference on Decision and Control, pp. 5216–5221 (2010)Google Scholar
  16. 16.
    Barcelli, D., Bemporad, A.: Decentralised model predictive control of dynamically-coupled linear systems: tracking under packet loss. In: 1st IFAC Workshop on Estimation and Control of Networked Systems, pp. 204–209, Venice (2009)Google Scholar
  17. 17.
    Alessio, A., Barcelli, D., Bemporad, A.: Decentralised model predictive control of dynamically coupled linear systems. J. Proc. Contr. 21(5), 705–714 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhoujie, L., Martins, J.: Graph partitioning-based coordination methods for large-scale multidisciplinary design optimisation problems. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Indianapolis (2012)Google Scholar
  19. 19.
    Barcelli, D., Bernardini, D., Bemporad, A.: Synthesis of networked switching linear decentralised controllers. In: 49th IEEE Conference on Decision and Control, pp. 2480–2485, Atlanta (2010)Google Scholar
  20. 20.
    Šiljak, D.D.: Decentralised Control of Complex Systems. Academic Press, New York (1991)Google Scholar
  21. 21.
    Johansson, K.H.: The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Trans. Contr. Syst. Tech. 8(3), 456–465 (2000)CrossRefGoogle Scholar
  22. 22.
    Alvarado, I., Limon, D., de la Peña, M., Maestre, J.M., Ridao, M.A., Scheu, H., Marquardt, W., Negenborn, R.R., De Schutter, B., Valencia, F., Espinosa, J.: A comparative analysis of distributed MPC techniques applied to HD-MPC four-tank benchmark. J. Process Control 21, 800–815 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ajay Kumar Sampathirao
    • 1
  • Pantelis Sopasakis
    • 1
    Email author
  • Alberto Bemporad
    • 1
  1. 1.IMT Institute for Advanced StudiesLuccaItaly

Personalised recommendations