Processing and Communications Rate Requirements in Sensor Networks for Physical Thread Assessment

  • Ioannis KyriakidesEmail author
  • Stelios Neophytou
  • Anastasis Kounoudes
  • Konstantinos Michail
  • Yiannis Argyrou
  • Thomas Wieland
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8985)


Sensor networks for the assessment of physical threats in critical infrastructure have the potential to provide continuous and reliable information on illegal activity over wide areas. In order to reach that potential, it is essential for the sensor network to operate efficiently by conducting processing and communication operations on a very limited power budget. In this work, it is shown that when sequentially assessing physical threats using a sensor network, the required processing and communication load is directly related to estimation uncertainty. It is, furthermore, shown that the processing and communications rate required for sequential estimation using a sensor network is much less than the rate required for processing and transmitting all data available at the nodes. This result can be used to reduce hardware cost and power requirements of the sensor network.


Bayesian target tracking Critical infrastructure security 


  1. 1.
    Rago, C., Willett, P., Bar-Shalom, Y.: Detection-tracking performance with combined waveforms. IEEE Trans. Aerosp. Electron. Syst. 34(6), 612–624 (1998)CrossRefGoogle Scholar
  2. 2.
    Kyriakides, I., Konstantinidis, I., Morrell, D., Benedetto, J.J., Papandreou-Suppappola, A.: Target tracking using particle filtering and CAZAC sequences. In: Waveform Diversity and Design, pp. 367–371 (2007)Google Scholar
  3. 3.
    Muise, R., Mahalanobis, A.: Recent results of integrated sensing and processing using a programmable hyperspectral imaging sensor. In: Proceedings of SPIE, Optical Pattern Recognition XVII, vol. 6245, April 2006Google Scholar
  4. 4.
    Priebe, C.E., Marchette, D.J., Healy, D.M.: Integrated sensing and processing decision trees. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 699–708 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Waagen, D., Schmitt, H.A., Shah, N.: Activities in integrated sensing and processing. In: Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing Conference, pp. 295–300, December 2004Google Scholar
  6. 6.
    Sira, S.P., Papandreou-Suppappola, A., Morrell, D.: Time-varying waveform selection and configuration for agile sensors in tracking applications. In: Proceedings of IEEE ICASSP, Philadelphia, April 2005Google Scholar
  7. 7.
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50(2), 174–188 (2002)CrossRefGoogle Scholar
  8. 8.
    Kyriakides, I., Morrell, D., Papandreou-Suppappola, A.: Sequential Monte Carlo methods for tracking multiple targets with deterministic and stochastic constraints. IEEE Trans. Sig. Process. 56(3), 937–948 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kyriakides, I.: A configurable compressive acquisition matrix for radar tracking using particle filtering. In: European Radar Conference (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ioannis Kyriakides
    • 1
    Email author
  • Stelios Neophytou
    • 1
  • Anastasis Kounoudes
    • 2
  • Konstantinos Michail
    • 2
  • Yiannis Argyrou
    • 2
  • Thomas Wieland
    • 3
  1. 1.Department of Electrical EngineeringUniversity of NicosiaNicosiaCyprus
  2. 2.SignalGeneriX LtdLimassolCyprus
  3. 3.Fraunhofer Application Center Wireless Sensor SystemsCoburgGermany

Personalised recommendations