Progressive Recovery from Failure in Multi-layered Interdependent Network Using a New Model of Interdependency

  • Anisha MazumderEmail author
  • Chenyang Zhou
  • Arun Das
  • Arunabha Sen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8985)


A number of models have been proposed to analyze interdependent networks in recent years. However most of the models are unable to capture the complex interdependencies between such networks. To overcome the limitations, we have recently proposed a new model. Utilizing this model, we provide techniques for progressive recovery from failure. The goal of the progressive recovery problem is to maximize the system utility over the entire duration of the recovery process. We show that the problem can be solved in polynomial time in some special cases, whereas for some others, the problem is NP-complete. We provide two approximation algorithms with performance bounds of 2 and 4 respectively. We provide an optimal solution utilizing Integer Linear Programming and a heuristic. We evaluate the efficacy of our heuristic with both synthetic and real data collected from Phoenix metropolitan area. The experiments show that our heuristic almost always produces near optimal solution.


Critical infrastructure Multi-layer networks Inter-dependence Progressive recovery Modeling Analysis 


  1. 1.
    Buldyrev, S., Parshani, R., Paul, G., Stanley, H., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)CrossRefGoogle Scholar
  2. 2.
    Gao, J., Buldyrev, S., Stanley, H., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8(1), 40–48 (2011)CrossRefGoogle Scholar
  3. 3.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed nets. J. Theor. Biol. 22(3), 437–467 (1969)CrossRefGoogle Scholar
  4. 4.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1), 63–79 (2008)CrossRefGoogle Scholar
  5. 5.
    Parandehgheibi, M., Modiano, E.: Robustness of Interdependent Networks: The case of communication networks and the power grid. arXiv preprint (2013). arxiv:1304.0356
  6. 6.
    Nguyen, D., Shen, Y., Thai, M.: Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Trans. Smart Grid 4(1), 151–159 (2013)CrossRefGoogle Scholar
  7. 7.
    Castet, J., Saleh, J.: Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks. PloS one 8(4), e60402 (2013)CrossRefGoogle Scholar
  8. 8.
    Hassin, R., Levin, A.: An approximation algorithm for the minimum latency set cover problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 726–733. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Feige, U., Lovsz, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40(4), 219–234 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sen, A., Mazumder, A., Banerjee, J., Das, A., Compton, R.: Identification of k most vulnerable nodes in multi-layered network using a new model of interdependency. In: Presented at the International Workshop on Network Science for Communication Networks (INFOCOM workshop). arXiv preprint (2014). arxiv:1401.1783
  11. 11.
    Smith, R.: U.S. Risks National Blackout From Small-Scale Attack. Wall Street Journal (2012).
  12. 12.
    Bernstein, A., Bienstock, D., Hay, D., Uzunoglu, M., Zussman, G.: Power grid vulnerability to 3 geographically correlated failures-analysis and control implications. arXiv preprint (2012). arxiv:1206.1099

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anisha Mazumder
    • 1
    Email author
  • Chenyang Zhou
    • 1
  • Arun Das
    • 1
  • Arunabha Sen
    • 1
  1. 1.School of Computing, Informatics and Decision System EngineeringArizona State UniversityTempeUSA

Personalised recommendations