Cascading Failures: Dynamic Model for CIP Purposes - Case of Random Independent Failures Following Poisson Stochastic Process

  • Mohamed EidEmail author
  • Terhi Kling
  • Tuula Hakkarainen
  • Yohan Barbarin
  • Amelie Grangeat
  • Dominique Serafin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8985)


Cascading failures are a challenging issue in Critical Infrastructure Protection (CIP) and related modelling, simulation and analysis (MS & A) activities. Critical Infrastructures (CIs) are complex systems of ever increasing complexity. A single failure may be propagated and amplified resulting in serious disruptions of some societal vital services. A dynamic model describing cascading random failures that occur following Poisson Stochastic Process (PSP) is proposed. The proposed model considers only independent failures. Additional R & D effort is necessary before extending the model to dependent failures.


Cascade Domino Effect Model CI CIP MS & A PREDICT 



The work presented in this paper has been partially realized and fully used in the frame of the EU collaborative project “PREDICT: PREparing for the Domino effect in Crisis siTuations”, FP7-SEC-2013-1.


  1. 1.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(2006), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Conrad, S.H., LeClaire, R.J., O’Reilly, G.P., Uzunalioglu, H.: Criticalnational infrastructure reliability modeling and analysis. Bell Labs Tech. J. 11, 57–71 (2006)CrossRefGoogle Scholar
  3. 3.
    Kotzanikolaou, P., MarianthiTheoharidou, D.G.: Assessing n-order dependencies between critical Infrastructures. Int. J. Critical Infrastruct. 9(1/2), 93–110 (2013). Copyright 2013 Inderscience Enterprises LtdCrossRefGoogle Scholar
  4. 4.
    Hernantes, J., Rich, E., Laug, A., Labaka, L., Sarriegi, J.M.: Learningbefore the storm: modeling multiple stakeholder activities in support of crisis management, a practical case. Technol. Forecast. Soc. Chang. 80, 1742–1755 (2013)CrossRefGoogle Scholar
  5. 5.
    Li, J., Chen, C.: Modeling the dynamics of disaster evolution along causality networks with cycle chains. Phys. A 401, 251–264 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rodriguez, J.T., Vitoriano, B., Mentero, J.: A general methodology for data-based rule building and its application to natural disaster management. Comput. Oper. Res. 39, 863–873 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Qiu, J., Wang, Z., Ye, X., Liu, L., Dong, L.: Modeling method of cascading crisis events based on merging bayesian network. Decis. Support Syst. 62, 94–105 (2014)CrossRefGoogle Scholar
  8. 8.
    Fang, C., Marle, F.: A simulation-based risk network model for decision support in project risk management. Decis. Support Syst. 52, 635–644 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, J.W., Rong, L.L.: Research on chain-reacting network model of emergency events. Appl. Res. Comput. 25, 3288–3291 (2008)Google Scholar
  10. 10.
    Ouyang, M., Dueas-Osorio, L.: An approach to design interface topologies across interdependent urban infrastructure systems. Reliab. Eng. Syst. Saf. 96(2011), 1462–1473 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhang, P., Peeta, S.: A generalized modeling framework to analyze interdependencies among infrastructure systems. Trans. Res. Part B 45(3), 553–579 (2011)CrossRefGoogle Scholar
  12. 12.
    Zhang, P., Peeta, S.: Dynamic and disequilibrium analysis of interdependent infrastructure systems. Transportation Research Part B (2014). doi:  10.1016/j.trb.2014.04.008 Google Scholar
  13. 13.
    Ouyang, M.: Review on modelling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf. 121(2014), 4360 (2014)Google Scholar
  14. 14.
    Fussell, J.B., Aber, E.F., Rahl, R.G.: On the quantitative analysis of Priority-AND failure Logic. IEEE Trans. Reliab. R–25(5), 324–326 (1976)CrossRefzbMATHGoogle Scholar
  15. 15.
    Yuge, T., Yanagi, S.: Quantitative analysis of a fault tree with priority AND gates. Reliab. Eng. Syst. Saf. 93, 1577–1583 (2008)CrossRefGoogle Scholar
  16. 16.
    Walker, M., Papadopoulos, Y.: Pandora 2: the time of priority-or gates. In: Proceedings of the IFAC Workshop on Dependable Control of Discrete Event Systems, DCDS07, Paris pp. 13–15, June 2007Google Scholar
  17. 17.
    Rai, S.: Evaluating FTRE’s for dependability measures in fault tolerant systems. ieee trans. comput. 44(2), 275–285 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Merle, G., Roussel, J.-M., Lesage, J.-J., Bobbio, A.: Probabilistic algebraic analysis of fault trees with priority dynamic gates and repeated events. IEEE Trans. Reliab. 59(1), 250–261 (2010)CrossRefGoogle Scholar
  19. 19.
    Merle, G., Roussel, J.-M., Lesage, J.-J., Bobbio, A.: Algebraic expression of the structure function of a subclass of dynamic fault trees. In: 2nd IFAC Workshop on Dependable Control of Discrete Systems (DCDS 2009), Bari, Italy (2009)Google Scholar
  20. 20.
    Merle, G., Roussel, J.-M., Lesage, J.-J., Vayatis, N.: Analytical calculation of failure probabilities in dynamic fault trees including spare gates. In: The European Safety and Reliability Conference (ESREL 2010), Rhodes, Greece (2010)Google Scholar
  21. 21.
    Yoshinobu, SATO: Safety assessment of automated production systems using microelectronics Quantification of the Priority-AND Failure Logic consisting repairable inputs events. paper given during the Yamanashi district Congress of the Japan Society of Mechanical Engineers, October 26, Paper N 85–0454 A (1985)Google Scholar
  22. 22.
    Walker, M., Papadopoulos, Y.: Qualitative Temporal Analysis: Towards a full implementation of the Fault Tree Handbook. Control Engineering Practice, Elsevier Science 17(10) 1115–1125, ISSN 0967–0661Google Scholar
  23. 23.
    Yuge, T., Yanagi, S.: Quantitative analysis of a fault tree with priority AND gates. Reliab. Eng. Syst. Saf. 93, 15771583 (2008)CrossRefGoogle Scholar
  24. 24.
    Liu, D., Zhang, C., Xing, W., Li, R., Li, H.: Quantification of cut sequence set for fault tree analysis. In: Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 755–765. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Manian, R., Bechta, J., Sullivan, K.J.: Combining various solution techniques for dynamic fault tree analysis of computer systems. In: Proceedings of the 3rd International High-Assurance Systems Engineering Symposium (HASE 1998) (1998).
  26. 26.
    Long, W., Sato, Y., Horigome, M.: Quantification of sequential failure logic for fault tree analysis. Reliab. Eng. Syst. Saf. 67, 269274 (2000)CrossRefGoogle Scholar
  27. 27.
    Kohda, T., Inoue, K.: A simple method to evaluate system failure occurrence probability using minimal cut sets. In: Proceedings of ESRel 2003, Safety and Reliability Bedford & van Gelder (eds.), Swets & Zeitlinger, Lisse, pp. 923–926 (2003). ISBN 90 5809 551 7Google Scholar
  28. 28.
    U.S. NRC. Fault Tree Handbook, NUREG-094 (1981)Google Scholar
  29. 29.
    Eid, M.: A general analytical solution for the occurrence probability of a sequence of ordered events following poison stochastic processes. J. Reliab. Theor. Appl. 2, RT&A # 03 (22), 21–32 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mohamed Eid
    • 1
    Email author
  • Terhi Kling
    • 2
  • Tuula Hakkarainen
    • 2
  • Yohan Barbarin
    • 3
  • Amelie Grangeat
    • 3
  • Dominique Serafin
    • 3
  1. 1.CEA Centre de Saclay, DEN/DANS/DM2S/SERMAGif Sur Yvette CedexFrance
  2. 2.VTT Technical Research Centre of FinlandEspooFinland
  3. 3.CEA/DAMCentre de Gramat, CEG/DEA/STEX/LRMEGramatFrance

Personalised recommendations