Skip to main content

Cascading Failures: Dynamic Model for CIP Purposes - Case of Random Independent Failures Following Poisson Stochastic Process

  • Conference paper
  • First Online:
Critical Information Infrastructures Security (CRITIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8985))

  • 1465 Accesses

Abstract

Cascading failures are a challenging issue in Critical Infrastructure Protection (CIP) and related modelling, simulation and analysis (MS & A) activities. Critical Infrastructures (CIs) are complex systems of ever increasing complexity. A single failure may be propagated and amplified resulting in serious disruptions of some societal vital services. A dynamic model describing cascading random failures that occur following Poisson Stochastic Process (PSP) is proposed. The proposed model considers only independent failures. Additional R & D effort is necessary before extending the model to dependent failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(2006), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  2. Conrad, S.H., LeClaire, R.J., O’Reilly, G.P., Uzunalioglu, H.: Criticalnational infrastructure reliability modeling and analysis. Bell Labs Tech. J. 11, 57–71 (2006)

    Article  Google Scholar 

  3. Kotzanikolaou, P., MarianthiTheoharidou, D.G.: Assessing n-order dependencies between critical Infrastructures. Int. J. Critical Infrastruct. 9(1/2), 93–110 (2013). Copyright 2013 Inderscience Enterprises Ltd

    Article  Google Scholar 

  4. Hernantes, J., Rich, E., Laug, A., Labaka, L., Sarriegi, J.M.: Learningbefore the storm: modeling multiple stakeholder activities in support of crisis management, a practical case. Technol. Forecast. Soc. Chang. 80, 1742–1755 (2013)

    Article  Google Scholar 

  5. Li, J., Chen, C.: Modeling the dynamics of disaster evolution along causality networks with cycle chains. Phys. A 401, 251–264 (2014)

    Article  MathSciNet  Google Scholar 

  6. Rodriguez, J.T., Vitoriano, B., Mentero, J.: A general methodology for data-based rule building and its application to natural disaster management. Comput. Oper. Res. 39, 863–873 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qiu, J., Wang, Z., Ye, X., Liu, L., Dong, L.: Modeling method of cascading crisis events based on merging bayesian network. Decis. Support Syst. 62, 94–105 (2014)

    Article  Google Scholar 

  8. Fang, C., Marle, F.: A simulation-based risk network model for decision support in project risk management. Decis. Support Syst. 52, 635–644 (2012)

    Article  Google Scholar 

  9. Wang, J.W., Rong, L.L.: Research on chain-reacting network model of emergency events. Appl. Res. Comput. 25, 3288–3291 (2008)

    Google Scholar 

  10. Ouyang, M., Dueas-Osorio, L.: An approach to design interface topologies across interdependent urban infrastructure systems. Reliab. Eng. Syst. Saf. 96(2011), 1462–1473 (2011)

    Article  Google Scholar 

  11. Zhang, P., Peeta, S.: A generalized modeling framework to analyze interdependencies among infrastructure systems. Trans. Res. Part B 45(3), 553–579 (2011)

    Article  Google Scholar 

  12. Zhang, P., Peeta, S.: Dynamic and disequilibrium analysis of interdependent infrastructure systems. Transportation Research Part B (2014). doi: 10.1016/j.trb.2014.04.008

    Google Scholar 

  13. Ouyang, M.: Review on modelling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf. 121(2014), 4360 (2014)

    Google Scholar 

  14. Fussell, J.B., Aber, E.F., Rahl, R.G.: On the quantitative analysis of Priority-AND failure Logic. IEEE Trans. Reliab. R–25(5), 324–326 (1976)

    Article  MATH  Google Scholar 

  15. Yuge, T., Yanagi, S.: Quantitative analysis of a fault tree with priority AND gates. Reliab. Eng. Syst. Saf. 93, 1577–1583 (2008)

    Article  Google Scholar 

  16. Walker, M., Papadopoulos, Y.: Pandora 2: the time of priority-or gates. In: Proceedings of the IFAC Workshop on Dependable Control of Discrete Event Systems, DCDS07, Paris pp. 13–15, June 2007

    Google Scholar 

  17. Rai, S.: Evaluating FTRE’s for dependability measures in fault tolerant systems. ieee trans. comput. 44(2), 275–285 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Merle, G., Roussel, J.-M., Lesage, J.-J., Bobbio, A.: Probabilistic algebraic analysis of fault trees with priority dynamic gates and repeated events. IEEE Trans. Reliab. 59(1), 250–261 (2010)

    Article  Google Scholar 

  19. Merle, G., Roussel, J.-M., Lesage, J.-J., Bobbio, A.: Algebraic expression of the structure function of a subclass of dynamic fault trees. In: 2nd IFAC Workshop on Dependable Control of Discrete Systems (DCDS 2009), Bari, Italy (2009)

    Google Scholar 

  20. Merle, G., Roussel, J.-M., Lesage, J.-J., Vayatis, N.: Analytical calculation of failure probabilities in dynamic fault trees including spare gates. In: The European Safety and Reliability Conference (ESREL 2010), Rhodes, Greece (2010)

    Google Scholar 

  21. Yoshinobu, SATO: Safety assessment of automated production systems using microelectronics Quantification of the Priority-AND Failure Logic consisting repairable inputs events. paper given during the Yamanashi district Congress of the Japan Society of Mechanical Engineers, October 26, Paper N 85–0454 A (1985)

    Google Scholar 

  22. Walker, M., Papadopoulos, Y.: Qualitative Temporal Analysis: Towards a full implementation of the Fault Tree Handbook. Control Engineering Practice, Elsevier Science 17(10) 1115–1125, ISSN 0967–0661

    Google Scholar 

  23. Yuge, T., Yanagi, S.: Quantitative analysis of a fault tree with priority AND gates. Reliab. Eng. Syst. Saf. 93, 15771583 (2008)

    Article  Google Scholar 

  24. Liu, D., Zhang, C., Xing, W., Li, R., Li, H.: Quantification of cut sequence set for fault tree analysis. In: Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 755–765. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Manian, R., Bechta, J., Sullivan, K.J.: Combining various solution techniques for dynamic fault tree analysis of computer systems. In: Proceedings of the 3rd International High-Assurance Systems Engineering Symposium (HASE 1998) (1998). http://www.cs.virginia.edu/~dwc3q/soft_eng/papers/combining_solution_techniques.pdf

  26. Long, W., Sato, Y., Horigome, M.: Quantification of sequential failure logic for fault tree analysis. Reliab. Eng. Syst. Saf. 67, 269274 (2000)

    Article  Google Scholar 

  27. Kohda, T., Inoue, K.: A simple method to evaluate system failure occurrence probability using minimal cut sets. In: Proceedings of ESRel 2003, Safety and Reliability Bedford & van Gelder (eds.), Swets & Zeitlinger, Lisse, pp. 923–926 (2003). ISBN 90 5809 551 7

    Google Scholar 

  28. U.S. NRC. Fault Tree Handbook, NUREG-094 (1981)

    Google Scholar 

  29. Eid, M.: A general analytical solution for the occurrence probability of a sequence of ordered events following poison stochastic processes. J. Reliab. Theor. Appl. 2, RT&A # 03 (22), 21–32 (2011)

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper has been partially realized and fully used in the frame of the EU collaborative project “PREDICT: PREparing for the Domino effect in Crisis siTuations”, FP7-SEC-2013-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Eid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Eid, M., Kling, T., Hakkarainen, T., Barbarin, Y., Grangeat, A., Serafin, D. (2016). Cascading Failures: Dynamic Model for CIP Purposes - Case of Random Independent Failures Following Poisson Stochastic Process. In: Panayiotou, C., Ellinas, G., Kyriakides, E., Polycarpou, M. (eds) Critical Information Infrastructures Security. CRITIS 2014. Lecture Notes in Computer Science(), vol 8985. Springer, Cham. https://doi.org/10.1007/978-3-319-31664-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31664-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31663-5

  • Online ISBN: 978-3-319-31664-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics