Fault Detection and Isolation in Critical Infrastructure Systems

  • Vicenç PuigEmail author
  • Teresa Escobet
  • Ramon Sarrate
  • Joseba Quevedo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8985)


Critical infrastructure systems (CIS) are complex large-scale systems which in turn require highly sophisticated supervisory control systems to ensure that high performance can be achieved and maintained under adverse conditions. The global CIS Real-Time Control (RTC) need of operating in adverse conditions involves, with a high probability, sensor and actuator malfunctions (faults). This problem calls for the use of an on-line Fault Detection and Isolation (FDI) system able to detect such faults. This paper proposes a FDI mechanism that extends the classical Boolean fault signature matrix concept taking into account several fault signal properties to isolate faults in CIS. To exemplify the proposed FDI scheme in CIS, the Barcelona drinking water network is used as a case study.


Fault Detection Fault Signal Fault Isolation Fault Tolerant Control Hardware Redundancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice Hall, Upper Saddle River (2003)Google Scholar
  2. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control, 2nd edn. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  3. Carrozza, G., Cotroneo, D. Russo, S.: Software faults diagnosis in complex OTS based safety critical systems. In: Proceedings of the Seventh European Dependable Computing Conference, pp. 25–34 (2008)Google Scholar
  4. Combastel, C., Gentil, S., Rognon, J.P.: Toward a better integration of residual generation and diagnostic decision. In: Proceedings of the IFAC Safeprocess 2003, Washington, USA (2003)Google Scholar
  5. Cordier, M.-O., Dague, P., Levy, F., Montmain, J., Staroswiecki, M., Travé-Massuyés, L.: Conflicts versus analytical redundancy relations: a comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(5), 2163–2177 (2004)CrossRefGoogle Scholar
  6. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998)Google Scholar
  7. Meseguer, J., Puig, V., Escobet, T.: Fault diagnosis using a timed discrete-event approach based on interval observers: application to sewer networks. IEEE Trans. Syst. Man Cybern. Part A 40(5), 900–916 (2010)CrossRefGoogle Scholar
  8. Ocampo-Martnez, C., Puig, V.: Fault-tolerant model predictive control within the hybrid systems framework: application to sewer networks. Int. J. Adapt. Control Signal Process. 23(8), 1099–1115 (2008)Google Scholar
  9. Ocampo-Martnez, C., Puig, V., Cembrano, G., Quevedo, J.: Application of predictive control strategies to the management of complex networks in the urban water cycle. IEEE Control Syst. Mag. 33(1), 15–41 (2013)MathSciNetCrossRefGoogle Scholar
  10. Puig, V., Quevedo, J., Escobet, T., Pulido, B.: A new fault diagnosis algorithm that improves the integration of fault detection and isolation. In: Proceedings of ECC-CDC 2005, Sevilla, Spain (2005)Google Scholar
  11. Puig, V., Quevedo, J., Escobet, T., De las Heras, S.: Passive robust fault detection of dynamic processes using interval models. IEEE Trans. Control Syst. Technol. 16(5), 1083–1089 (2008)CrossRefGoogle Scholar
  12. Rosich, A., Frisk, E., Åslund, J., Sarrate, R., Nejjari, F.: Fault diagnosis based on causal computations. IEEE Trans. Syst. Man Cybern. Part A 42(2), 371–381 (2012)CrossRefGoogle Scholar
  13. Sarrate, R., Blesa, J., Nejjari, F.: Water Supply. doi: 10.2166/ws.2014.037. Google Scholar
  14. Schilling, W., Anderson, B., Nyberg, U., Aspegren, H., Rauch, W., Harremoës, P.: Real-time control of wasterwater systems. J. Hydraul. Resour. 34(6), 785–797 (1996)CrossRefGoogle Scholar
  15. Schütze, M., Butler, D., Beck, B.: Modelling, Simulation and Control of Urban Wastewater Systems. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. Schütze, M., Campisanob, A., Colas, H., Schilling, W., Vanrolleghem, P.: Real time control of urban wastewater systems: where do we stand today? J. Hydrol. 299, 335–348 (2004)CrossRefGoogle Scholar
  17. Tornil-Sin, S., Ocampo-Martinez, C., Puig, V., Escobet, T.: Robust fault diagnosis of nonlinear systems using interval constraint satisfaction and analytical redundancy relations. IEEE Trans. Syst. Man Cybern. Syst. Part B 44(1), 18–29 (2014)CrossRefGoogle Scholar
  18. Travé-Massuyés, L., Escobet, T., Olive, X.: Diagnosability analysis based on component supported analytical redundancy relations. IEEE Trans. Syst. Man Cybern. Syst. Part A 36(6), 1146–1160 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vicenç Puig
    • 1
    Email author
  • Teresa Escobet
    • 1
  • Ramon Sarrate
    • 1
  • Joseba Quevedo
    • 1
  1. 1.Advanced Control Systems (SAC)Universitat Politcnica de Catalunya (UPC)Terrassa, BarcelonaSpain

Personalised recommendations