Skip to main content

Magnetoelectric Coupling and Overall Properties of a Class of Multiferroic Composites

  • Chapter
  • First Online:
Book cover Advances in Nanocomposites

Abstract

In this chapter we present a widely useful composite model for the calculation of magnetoelectric coupling and all other properties of a two-phase multiferroic composite consisting of aligned piezomagnetic (or piezoelectric) spheroidal inclusions in a piezoelectric (or piezomagnetic) matrix. Both perfect and imperfect interface conditions are considered. Among the many features of the properties reported is the intriguing magnetoelectric coupling that signifies the \( ``0+0 \to 1" \) product effect of the multiferroic composite. It is also reported that, due to the piezoelectric-piezomagnetic interaction, the elastic C 44 of the composite can be substantially higher than that of either of the two phases. We have used the theory to calculate the 17 independent material constants: 5 elastic, 3 piezoelectric, 3 piezomagnetic, 2 dielectric, 2 magnetic, and 2 magnetoelectric coefficients of a transversely isotropic BaTiO3-CoFe2O4 composite, and show how these magneto-electro-elastic constants depend on the volume concentration, aspect ratio of inclusions, and the interface condition. We conclude by pointing out that a weak interface model is often required to capture the experimentally measured data of a bulk multiferroic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avellaneda, M., Harshé, G.: Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites. J. Intell. Mater. Syst. Struct. 5, 501–513 (1994)

    Article  Google Scholar 

  • Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  • Benveniste, Y.: Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51, 16424–16427 (1995)

    Article  Google Scholar 

  • Bichurin, M.I., Petrov, V.M., Srinivasan, G.: Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B 68, 054402 (2003)

    Article  Google Scholar 

  • Chen, T.: Green’s functions and the non-uniform transformation problem in a piezo electric medium. Mech. Res. Commun. 20, 271–278 (1993a)

    Article  Google Scholar 

  • Chen, T.: Piezoelectric properties of multipase fibrous composites: some theoretical results. J. Mech. Phys. Solids 41, 1781–1794 (1993b)

    Article  Google Scholar 

  • Chen, T.: Exact moduli and bounds of two-phase composites with coupled multifield linear responses. J. Mech. Phys. Solids 45, 385–398 (1997)

    Article  Google Scholar 

  • Chen, Z., Su, Y., Meguid, S.A.: The effect of field-orientation on the magnetoelectric coupling in Terfenol-D/PZT/Terfenol-D laminated structure. J. Appl. Phys. 116, 173910 (2014)

    Article  Google Scholar 

  • Dinzart, F., Sabar, H.: Magnetoelectric effect in coated fibrous magnetic–piezoelectric composites. J. Intell. Mater. Syst. Struct. 23, 1249–1261 (2012)

    Article  Google Scholar 

  • Dunn, M.L.: Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. Int. J. Eng. Sci. 32, 119–131 (1994)

    Article  Google Scholar 

  • Dunn, M.L., Taya, M.: An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. Lond. A 443, 265–287 (1993a)

    Article  Google Scholar 

  • Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993b)

    Article  Google Scholar 

  • Dunn, M.L., Wienecke, H.A.: Green’s functions for transversely isotropic piezoelectric solids. Int. J. Solids Struct. 33, 4571–4581 (1996)

    Article  Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  Google Scholar 

  • Harshé, G., Dougherty, J.P., Newnham, R.E.: Theoretical modelling of 3-0/0-3 magnetoelectric composites. Int. J. Appl. Elec. Mech. 4, 161–171 (1993)

    Google Scholar 

  • Hill, R.: Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour. J. Mech. Phys. Solids 12, 199–212 (1964)

    Article  Google Scholar 

  • Huang, J.H.: Analytical predictions for the magnetoelectric coupling in piezomagnetic materials reinforced by piezoelectric ellipsoidal inclusions. Phys. Rev. B 58, 12–15 (1998)

    Article  Google Scholar 

  • Huang, J.H., Chiu, Y.-H., Liu, H.-K.: Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions. J. Appl. Phys. 83, 5364–5370 (1998)

    Article  Google Scholar 

  • Huang, J.H., Kuo, W.-S.: The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys. 81, 1378–1386 (1997)

    Article  Google Scholar 

  • Huang, J.H., Yu, J.S.: Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)

    Article  Google Scholar 

  • Kuo, H.-Y.: Effective property of multiferroic fibrous composites with imperfect interfaces. Smart Mater. Struct. 22, 105005 (2013)

    Article  Google Scholar 

  • Kuo, H.-Y., Bhattacharya, K.: Fibrous composites of piezoelectric and piezomagnetic phases. Mech. Mater. 60, 159–170 (2013)

    Article  Google Scholar 

  • Kuo, H.-Y., Slinger, A., Bhattacharya, K.: Optimization of magnetoelectricity in piezoelectric–magnetostrictive bilayers. Smart Mater. Struct. 19, 125010 (2010)

    Article  Google Scholar 

  • Li, J., Weng, G.J.: A theory of domain switch for the nonlinear behavior of ferroelectrics. Proc. R. Soc. Lond. A 455, 3493–3511 (1999)

    Article  Google Scholar 

  • Li, J.Y., Dunn, M.L.: Anisotropic coupled-field inclusion and inhomogeneity problems. Phil. Mag. A 77, 1341–1350 (1998a)

    Article  Google Scholar 

  • Li, J.Y., Dunn, M.L.: Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9, 404–416 (1998b)

    Article  Google Scholar 

  • Liu, G., Zhang, C., Dong, S.: Magnetoelectric effect in magnetostrictive/piezoelectric laminated composite operating in shear-shear mode. J. Appl. Phys. 116, 074104 (2014)

    Article  Google Scholar 

  • Liu, L.P., Kuo, H.-Y.: Closed-form solutions to the effective properties of fibrous magnetoelectric composites and their applications. Int. J. Solids Struct. 49, 3055–3062 (2012)

    Article  Google Scholar 

  • Mikata, Y.: Determination of piezoelectric Eshelby tensor in transversely isotropic piezoelectric solids. Int. J. Eng. Sci. 38, 605–641 (2000)

    Article  Google Scholar 

  • Mikata, Y.: Explicit determination of piezoelectric Eshelby tensors for a spheroidal inclusion. Int. J. Solids Struct. 38, 7045–7063 (2001)

    Article  Google Scholar 

  • Milgrom, M., Shtrikman, S.: Linear response of two-phase composites with cross moduli: exact universal relations. Phys. Rev. A 40, 1568–1575 (1989)

    Article  Google Scholar 

  • Nan, C.-W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Article  Google Scholar 

  • Soh, A.K., Liu, J.X.: On the constitutive equations of magnetoelectroelastic solids. J. Intell. Mater. Syst. Struct. 16, 597–602 (2005)

    Article  Google Scholar 

  • Srinivas, S., Li, J.Y., Zhou, Y.C., Soh, A.K.: The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J. Appl. Phys. 99, 043905 (2006)

    Article  Google Scholar 

  • van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)

    Google Scholar 

  • Wang, B.: Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Solids Struct. 29, 298–303 (1992)

    Google Scholar 

  • Wang, X., Pan, E.: Magnetoelectric effects in multiferroic fibrous composite with imperfect interface. Phys. Rev. B 76, 214107 (2007)

    Article  Google Scholar 

  • Wang, Y., Hasanyan, D., Li, M., Gao, J., Li, J., Viehland, D., Luo, H.: Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites. J. Appl. Phys. 111, 124513 (2012)

    Article  Google Scholar 

  • Wang, Y., Su, Y., Li, J., Weng, G.J.: A theory of magnetoelectric coupling with interface effects and aspect-ratio dependence in piezoelectric-piezomagnetic composites. J. Appl. Phys. 117, 164106 (2015)

    Article  Google Scholar 

  • Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115, 193706 (2014)

    Article  Google Scholar 

  • Weng, G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  Google Scholar 

  • Weng, G.J.: The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds. Int. J. Eng. Sci. 28, 1111–1120 (1990)

    Article  Google Scholar 

  • Weng, G.J.: Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. Int. J. Eng. Sci. 30, 83–92 (1992)

    Article  Google Scholar 

  • Weng, G.J., Wong, D.T.: Thermodynamic driving force in ferroelectric crystals with a rank-2 laminated domain pattern, and a study of enhanced electrostriction. J. Mech. Phys. Solids 57, 571–597 (2009)

    Article  Google Scholar 

  • Willis, J.R.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25, 185–202 (1977)

    Article  Google Scholar 

  • Yue, Y.M., Xu, K.Y.: Influence of thin interphase on magnetoelectric effect of coated cylindrical fibrous multiferroic composites. J. Appl. Phys. 113, 224101 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation, Mechanics of Materials Program, under grant CMMI-1162431.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Weng .

Editor information

Editors and Affiliations

Appendices

Appendix 1: The Eight Variants of the Coupled Constitutive Equations

Eight different types of thermodynamic potentials can be developed based on different choices of the (σ, ε),, (D, E), and (B, H) pairs. This leads to eight different variants of the magneto-electro-elastic constitutive equations. Following Soh and Liu (2005), we write

Type

Independent variables

Constitutive equations

1

ε, E, H

\( \begin{array}{l}\sigma ={\mathbf{C}}_{E,H}\varepsilon -{\mathbf{e}}_H^{\mathrm{T}}E-{\mathbf{q}}_E^{\mathrm{T}}H\\ {}D={\mathbf{e}}_H\varepsilon +{k}_{\varepsilon, H}E+{\alpha}_{\varepsilon }H\\ {}B={\mathbf{q}}_E\varepsilon +{\boldsymbol{\upalpha}}_{\varepsilon }E+{\boldsymbol{\upmu}}_{\varepsilon, E}H\end{array} \)

2

σ, D, B

\( \begin{array}{l}\varepsilon ={\mathbf{S}}_{D,B}\sigma +{\mathbf{g}}_B^{\mathrm{T}}D+{\mathbf{m}}_D^{\mathrm{T}}B\\ {}E=-{\mathbf{g}}_B\sigma +{\beta}_{\sigma, B}D-{\lambda}_{\sigma }B\\ {}H=-{\mathbf{m}}_D\sigma -{\boldsymbol{\uplambda}}_{\sigma }D+{\boldsymbol{\upupsilon}}_{\sigma, D}B\end{array} \)

3

ε, D, H

\( \begin{array}{l}\sigma ={\mathbf{C}}_{D,H}\varepsilon -{\mathbf{h}}_H^{\mathrm{T}}D-{\mathbf{q}}_D^{\mathrm{T}}H\\ {}E=-{\mathbf{h}}_H\varepsilon +{\boldsymbol{\upbeta}}_{\varepsilon, H}D-{\boldsymbol{\upvarsigma}}_{\varepsilon }H\\ {}B={\mathbf{q}}_D\varepsilon +{\boldsymbol{\upvarsigma}}_{\varepsilon }D+{\boldsymbol{\upmu}}_{\varepsilon, D}H\end{array} \)

4

σ, E, B

\( \begin{array}{l}\varepsilon ={\mathbf{S}}_{E,B}\sigma +{\mathbf{d}}_B^{\mathrm{T}}E+{\mathbf{m}}_E^{\mathrm{T}}B\\ {}D={\mathbf{d}}_B\sigma +{k}_{\sigma, B}E+{\eta}_{\sigma }B\\ {}H=-{\mathbf{m}}_E\sigma -{\boldsymbol{\upeta}}_{\sigma }E+{\boldsymbol{\upupsilon}}_{\sigma, E}B\end{array} \)

5

ε, E, B

\( \begin{array}{l}\sigma ={\mathbf{C}}_{E,B}\varepsilon -{\mathbf{e}}_B^{\mathrm{T}}E-{\mathbf{n}}_E^{\mathrm{T}}B\\ {}D={\mathbf{e}}_B\varepsilon +{k}_{\varepsilon, B}E+{\eta}_{\varepsilon }B\\ {}H=-{\mathbf{n}}_E\varepsilon -{\boldsymbol{\upeta}}_{\varepsilon }E+{\boldsymbol{\upupsilon}}_{\varepsilon, E}B\end{array} \)

6

σ, D, H

\( \begin{array}{l}\varepsilon ={\mathbf{S}}_{D,H}\sigma +{\mathbf{g}}_H^{\mathrm{T}}D+{\mathbf{p}}_D^{\mathrm{T}}H\\ {}E=-{\mathbf{g}}_H\sigma +{\beta}_{\sigma, H}D-{\boldsymbol{\upvarsigma}}_{\sigma }H\\ {}B={\mathbf{p}}_D\sigma +{\boldsymbol{\upvarsigma}}_{\sigma }D+{\boldsymbol{\upmu}}_{\sigma, D}H\end{array} \)

7

ε, D, B

\( \begin{array}{l}\sigma ={\mathbf{C}}_{D,B}\varepsilon -{\mathbf{h}}_B^{\mathrm{T}}D-{\mathbf{n}}_D^{\mathrm{T}}B\\ {}E=-{\mathbf{h}}_B\varepsilon +{\boldsymbol{\upbeta}}_{\varepsilon, B}D-{\lambda}_{\varepsilon }B\\ {}H=-{\mathbf{n}}_D\varepsilon -{\boldsymbol{\uplambda}}_{\varepsilon }D+{\boldsymbol{\upupsilon}}_{\varepsilon, D}B\end{array} \)

8

σ, E, H

\( \begin{array}{l}\varepsilon ={\mathbf{S}}_{E,H}\sigma +{\mathbf{d}}_H^{\mathrm{T}}E+{\mathbf{p}}_E^{\mathrm{T}}H\\ {}D={\mathbf{d}}_H\sigma +{\kappa}_{\sigma, H}E+{\alpha}_{\sigma }H\\ {}B={\mathbf{p}}_E\sigma +{\boldsymbol{\upalpha}}_{\sigma }E+{\boldsymbol{\upmu}}_{\sigma, E}H\end{array} \)

In the above constitutive equations, each subscript denotes that the corresponding tensor is measured under which kind of constant field. For instance, C E,H means this elastic stiffness tensor is measured under constant electric and magnetic field, so it is different from C E,B . However the coefficients of one pair are dependent upon the coefficients of another. From any given pair we can derive the rest seven pairs. They can be converted from each other, as below:

  1. 1.

    When all the independent variables are to be reversed, a direct inversion of the matrix is sufficient. For instance, given the matrix for independent variables (ε, E, H), we can find that for (σ, D, B) through

    $$ \left[\begin{array}{ccc}\hfill {\mathbf{S}}_{D,B}\hfill & \hfill {\mathbf{g}}_B^T\hfill & \hfill {\mathbf{m}}_D^T\hfill \\ {}\hfill -{\mathbf{g}}_B\hfill & \hfill {\beta}_{\sigma, B}\hfill & \hfill -{\lambda}_{\sigma}\hfill \\ {}\hfill -{\mathbf{m}}_D\hfill & \hfill -{\lambda}_{\sigma}\hfill & \hfill {\upsilon}_{\sigma, D}\hfill \end{array}\right]={\left[\begin{array}{ccc}\hfill {\mathbf{C}}_{E,H}\hfill & \hfill -{\mathbf{e}}_H^T\hfill & \hfill -{\mathbf{q}}_E^T\hfill \\ {}\hfill {\mathbf{e}}_H\hfill & \hfill {\kappa}_{\varepsilon, H}\hfill & \hfill {\alpha}_{\varepsilon}\hfill \\ {}\hfill {\mathbf{q}}_E\hfill & \hfill {\alpha}_{\varepsilon}\hfill & \hfill {\mu}_{\varepsilon, E}\hfill \end{array}\right]}^{-1}. $$
    (8.13)
  2. 2.

    But when only one or two independent variables are to be changed, a sequential conversion is needed. For example, given the matrix for (ε, E, H), we can find that for (σ, E, H) by

    $$ \left[\begin{array}{ccc}\hfill {\mathbf{S}}_{E,H}\hfill & \hfill {\mathbf{d}}_H^T\hfill & \hfill {\mathbf{p}}_E^T\hfill \\ {}\hfill {\mathbf{d}}_H\hfill & \hfill {\kappa}_{\sigma, H}\hfill & \hfill {\alpha}_{\sigma}\hfill \\ {}\hfill {\mathbf{p}}_E\hfill & \hfill {\alpha}_{\sigma}\hfill & \hfill {\mu}_{\sigma, E}\hfill \end{array}\right]=\left[\begin{array}{ccc}\hfill {\mathbf{S}}_{D,B}\hfill & \hfill {\mathbf{g}}_B^T\hfill & \hfill {\mathbf{m}}_D^T\hfill \\ {}\hfill \mathbf{0}\hfill & \hfill \mathbf{I}\hfill & \hfill \mathbf{0}\hfill \\ {}\hfill \mathbf{0}\hfill & \hfill \mathbf{0}\hfill & \hfill \mathbf{I}\hfill \end{array}\right]\left[\begin{array}{ccc}\hfill {\mathbf{C}}_{E,H}\hfill & \hfill -{\mathbf{e}}_H^T\hfill & \hfill -{\mathbf{q}}_E^T\hfill \\ {}\hfill {\mathbf{e}}_H\hfill & \hfill {\kappa}_{\varepsilon, H}\hfill & \hfill {\alpha}_{\varepsilon}\hfill \\ {}\hfill {\mathbf{q}}_E\hfill & \hfill {\alpha}_{\varepsilon}\hfill & \hfill {\mu}_{\varepsilon, E}\hfill \end{array}\right]{\left[\begin{array}{ccc}\hfill {\mathbf{C}}_{E,H}\hfill & \hfill -{\mathbf{e}}_H^T\hfill & \hfill -{\mathbf{q}}_E^T\hfill \\ {}\hfill \mathbf{0}\hfill & \hfill \mathbf{I}\hfill & \hfill \mathbf{0}\hfill \\ {}\hfill \mathbf{0}\hfill & \hfill \mathbf{0}\hfill & \hfill \mathbf{I}\hfill \end{array}\right]}^{-1}. $$
    (8.14)

Appendix 2: The Determination of the Magneto-Electro-Elastic S-Tensor

The magneto-electro-elastic S-tensor has been studied by Li and Dunn (1998a, b), Huang et al. (1998), and several others. Here we briefly summarize the method for calculating this S-tensor with the notations used here.

First, we define a material constant “tensor” (which is not a real tensor by rigorous definition) L iJMn for the matrix phase of multiferroic composites, with subscript \( i,n=1\sim 3 \) and \( J,M=1\sim 5 \):

$$ {\mathbf{L}}_{iJMn}=\left\{\begin{array}{l}{\mathbf{C}}_{iJMn}, J,M=1,2,3,\\ {}{\mathbf{e}}_{niJ}, J=1,2,3,M=4,\\ {}{\mathbf{q}}_{niJ}, J=1,2,3,M=5,\\ {}{\mathbf{e}}_{iMn}, J=4,M=1,2,3,\\ {}{\mathbf{q}}_{iMn}, J=5,M=1,2,3,\\ {}-{\kappa}_{in}, J=4, M=4,\\ {}-{\alpha}_{in}, J=4, M=5 \& J=5, M=4,\\ {}-{\mu}_{in}, J=5, M=5.\end{array}\right. $$
(8.15)

With L iJMn , we introduce a \( 5\times 5 \) matrix K MJ ,

$$ {\mathbf{K}}_{MJ}={\mathbf{L}}_{iJMn}{x}_i{x}_n, $$
(8.16)

where \( {x}_i={\left[{x}_1, {x}_2, {x}_3\right]}^{\mathrm{T}} \). Then we define another pseudo tensor J inMJ ,

$$ {\mathbf{J}}_{inMJ}\left({x}_1, {x}_2, {x}_3\right)={x}_i{x}_n{\mathbf{K}}_{MJ}^{-1}, $$
(8.17)

so that it is a function of x 1, x 2, and x 3. Next we integrate J inMJ over the volume of an ellipsoid inclusion \( \Omega : {x}_1^2/{a}_1^2+{x}_2^2/{a}_2^2+{x}_3^2/{a}_3^2\le 1 \). When this inclusion is spheroidal and symmetric about three-direction, it satisfies \( {a}_1={a}_2 \) and \( \alpha ={\alpha}_3/{a}_1 \), where α is the aspect ratio of inclusions used in the text. Hence the volume integral of J inMJ can be written as

$$ \begin{array}{c}{\mathbf{H}}_{inMJ}={\displaystyle {\int}_{\Omega}{\mathbf{J}}_{inMJ}\left({x}_1/{a}_1, {x}_2/{a}_2, {x}_3/{a}_3\right)}\mathrm{d}V={\displaystyle {\int}_{\Omega}{\mathbf{J}}_{inMJ}\left({x}_1, {x}_2, {x}_3/\alpha \right)}\mathrm{d}V,\\ {}={\displaystyle \underset{-1}{\overset{1}{\int }}\mathrm{d}\tau {\displaystyle \underset{0}{\overset{2\pi }{\int }}{\mathbf{J}}_{inMJ}\left({y}_1, {y}_2,\kern0.5em {y}_3/\alpha \right)\mathrm{d}\theta },}\end{array} $$
(8.18)

where the second equality is based on the fact that J inMJ is a homogeneous function of order zero; thus multiplying all the variables by a 1 will not affect the integration. The third equality is given by applying a change of variables from x 1, x 2, and x 3 to

$$ {y}_1=\sqrt{1-{\tau}^2} \cos \theta, {y}_1=\sqrt{1-{\tau}^2} \sin \theta, {y}_3=\tau, $$
(8.19)

with \( \tau \in \left[-1, 1\right] \) and \( \theta \in \left[0, 2\pi \right] \). Finally the S-tensor is determined by

$$ {\mathbf{S}}_{MnAb}=\left\{\begin{array}{l}\frac{1}{8\pi }{\mathbf{L}}_{iJAb}\left({\mathbf{H}}_{in MJ}+{\mathbf{H}}_{iMnJ}\right), M=1\sim 3,\\ {}\frac{1}{4\pi }{\mathbf{L}}_{iJAb}{\mathbf{H}}_{in4J}, M=4,\\ {}\frac{1}{4\pi }{\mathbf{L}}_{iJAb}{\mathbf{H}}_{in5J}, M=5.\end{array}\right. $$
(8.20)

Still S MnAb is a pseudo tensor. For the convenience of calculation we now convert it into a \( 12\times 12 \) matrix S by the Voigt-Nye contract notations.

For a general spheroid, evaluation of the integral in Eq. (8.18) can be carried out by the Gaussian quadrature method. It turns the definite integral into a weighted sum of function values at specified points within the domain of integration. Then it can be rewritten as

$$ {\mathbf{H}}_{inMJ}={\displaystyle \underset{-1}{\overset{1}{\int }}\mathrm{d}\tau {\displaystyle \underset{0}{\overset{2\pi }{\int }}{\mathbf{J}}_{inMJ}\left({y}_1, {y}_2, {y}_3/\alpha \right)\mathrm{d}\theta }}\approx {\displaystyle \sum_{i=1}^n{w}_if\left({\tau}_i\right)}, $$
(8.21)

where \( f\left(\tau \right)={\displaystyle \underset{0}{\overset{2\pi }{\int }}{\mathbf{J}}_{inMJ}\left({y}_1, {y}_2, {y}_3/\alpha \right)\mathrm{d}\theta } \), n is the total number of specified points (usually \( n=20 \) or more will provide enough accuracy), and w i is the weight at each specified point which can be constructed by different kinds of weight function. Up to this point the calculation of S-tensor is completed. In general, S-tensor is not symmetric, while \( \mathbf{S}{\mathbf{L}}_0^{-1} \) must always be symmetric, as L 0 (the material constant for matrix phase) written in Eq. (8.8) is symmetric. This can be used as a criterion to check if the calculated components of S-tensor are correct.

Explicit forms of the S-tensor are available for 1-3 fibrous composite \( \left(\alpha \to \infty \right) \) and 2-2 multilayered structure \( \left(\alpha \to 0\right) \). These two connectivities represent the most widely used microstructures and are frequently adopted in experiments. Due to the transverse isotropy of the phase, its derivation is quite involved. Keeping in mind that direction 3 is symmetric and plane 1-2 isotropic, its components can be summarized as below:

$$ \begin{array}{ccc}\hfill \mathrm{Type}\hfill & \hfill \mathrm{Piezoelectric}\ \mathrm{matrix}\hfill & \hfill \mathrm{Piezomagnetic}\ \mathrm{matrix}\hfill \\ {}\hfill \hfill & \hfill {S}_{11}={S}_{22}=\frac{5{C}_{11}+{C}_{12}}{8{C}_{11}},\hfill & \hfill {S}_{11}={S}_{22}=\frac{5{C}_{11}+{C}_{12}}{8{C}_{11}},\hfill \\ {}\hfill \hfill & \hfill {S}_{12}={S}_{21}=-\frac{1}{8}+\frac{3{C}_{12}}{8{C}_{11}},\hfill & \hfill {S}_{12}={S}_{21}=-\frac{1}{8}+\frac{3{C}_{12}}{8{C}_{11}},\hfill \\ {}\hfill 1\hbox{-} 3\hfill & \hfill {S}_{13}={S}_{23}=\frac{C_{13}}{2{C}_{11}}, {S}_{19}={S}_{29}=\frac{e_{31}}{2{C}_{11}},\hfill & \hfill {S}_{13}={S}_{23}=\frac{C_{13}}{2{C}_{11}}, {S}_{1,12}={S}_{2,12}=\frac{q_{31}}{2{C}_{11}},\hfill \\ {}\hfill \hfill & \hfill {S}_{66}=\frac{3}{4}-\frac{C_{12}}{4{C}_{11}},\hfill & \hfill {S}_{66}=\frac{3}{4}-\frac{C_{12}}{4{C}_{11}},\hfill \\ {}\hfill \hfill & \hfill {S}_{44}={S}_{55}={S}_{77}={S}_{88}={S}_{10,10}={S}_{11,11}=\frac{1}{2},\hfill & \hfill {S}_{44}={S}_{55}={S}_{77}={S}_{88}={S}_{10,10}={S}_{11,11}=\frac{1}{2},\hfill \\ {}\hfill \hfill & \hfill \mathrm{all} \mathrm{the} \mathrm{other} \mathrm{components}\kern0.85em \mathrm{are}\kern0.85em \mathrm{zero}.\hfill & \hfill \mathrm{all}\kern0.85em \mathrm{the}\kern0.85em \mathrm{other}\kern0.85em \mathrm{components}\kern0.85em \mathrm{are}\kern0.85em \mathrm{zero}.\hfill \\ {}\hfill \hfill & \hfill {S}_{31}={S}_{32}=\frac{e_{31}{e}_{33}+{C}_{13}{\kappa}_{33}}{{e_{33}}^2+{C}_{33}{\kappa}_{33}},\hfill & \hfill {S}_{31}={S}_{32}=\frac{q_{31}{q}_{33}+{C}_{13}{\mu}_{33}}{{q_{33}}^2+{C}_{33}{\mu}_{33}},\hfill \\ {}\hfill 2\hbox{-} 2\hfill & \hfill {S}_{57}={S}_{48}=\frac{e_{15}}{C_{44}},\hfill & \hfill {S}_{5,10}={S}_{4,11}=\frac{q_{15}}{C_{44}},\hfill \\ {}\hfill \hfill & \hfill {S}_{91}={S}_{92}=\frac{-{C}_{33}{e}_{31}+{C}_{13}{e}_{33}}{{e_{33}}^2+{C}_{33}{\kappa}_{33}},\hfill & \hfill {S}_{12,1}={S}_{12,2}=\frac{-{C}_{33}{q}_{31}+{C}_{13}{q}_{33}}{{q_{33}}^2+{C}_{33}{\mu}_{33}},\hfill \\ {}\hfill \hfill & \hfill {S}_{33}={S}_{44}={S}_{55}={S}_{99}={S}_{12,12}=1,\hfill & \hfill {S}_{33}={S}_{44}={S}_{55}={S}_{99}={S}_{12,12}=1,\hfill \\ {}\hfill \hfill & \hfill \mathrm{all}\kern0.85em \mathrm{the}\kern0.85em \mathrm{other}\kern0.85em \mathrm{components}\kern0.85em \mathrm{are}\kern0.85em \mathrm{zero}.\hfill & \hfill \mathrm{all}\kern0.85em \mathrm{the}\kern0.85em \mathrm{other}\kern0.85em \mathrm{components}\kern0.85em \mathrm{are}\kern0.85em \mathrm{zero}.\hfill \end{array} $$
(8.22)

For the S-tensor of the interphase, which is isotropic, its components are

$$ {S}_{11}^{\mathrm{int}}={S}_{22}^{\mathrm{int}}=\frac{3}{8\left(1-{\nu}_0\right)}\frac{\alpha^2}{\alpha^2-1}+\frac{1}{4\left(1-{\nu}_0\right)}\left[1-2{\nu}_0-\frac{9}{4\left({\alpha}^2-1\right)}\right]g\left(\mathrm{g}\upalpha \right), $$
$$ {S}_{33}^{\mathrm{int}}=\frac{1}{2\left(1-{\nu}_0\right)}\left\{1-2{\nu}_0+\frac{3{\alpha}^2-1}{\alpha^2-1}-\left[1-2{\nu}_0+\frac{3{\alpha}^2}{\alpha^2-1}\right]g\left(\alpha \right)\right\}, $$
$$ {S}_{12}^{\mathrm{int}}={S}_{21}^{\mathrm{int}}=\frac{1}{4\left(1-{\nu}_0\right)}\left\{\frac{\alpha^2}{2\left({\alpha}^2-1\right)}-\left[1-2{\nu}_0+\frac{3}{4\left({\alpha}^2-1\right)}\right]g\left(\alpha \right)\right\}, $$
$$ {S}_{13}^{\mathrm{int}}={S}_{23}^{\mathrm{int}}=-\frac{1}{2\left(1-{\nu}_0\right)}\frac{\alpha^2}{\alpha^2-1}+\frac{1}{4\left(1-{\nu}_0\right)}\left\{\frac{3{\alpha}^2}{\alpha^2-1}-\left(1-2{\nu}_0\right)\right\}g\left(\alpha \right), $$
$$ {S}_{31}^{\mathrm{int}}={S}_{32}^{\mathrm{int}}=-\frac{1}{2\left(1-{\nu}_0\right)}\left[1-2{\nu}_0+\frac{1}{\alpha^2-1}\right]+\frac{1}{2\left(1-{\nu}_0\right)}\left[1-2{\nu}_0+\frac{3}{2\left({\alpha}^2-1\right)}\right]g\left(\alpha \right), $$
(8.23)
$$ {S}_{44}^{\mathrm{int}}={S}_{55}^{\mathrm{int}}=\frac{1}{2\left(1-{\nu}_0\right)}\left\{1-2{\nu}_0-\frac{\alpha^2+1}{\alpha^2-1}-\frac{1}{2}\left[1-2{\nu}_0-\frac{3\left({\alpha}^2+1\right)}{\alpha^2-1}\right]g\left(\alpha \right)\right\}, $$
$$ {S}_{66}^{\mathrm{int}}=\frac{1}{2\left(1-{\nu}_0\right)}\left\{\frac{\alpha^2}{2\left({\alpha}^2-1\right)}+\left[1-2{\nu}_0-\frac{3}{4\left({\alpha}^2-1\right)}\right]g\left(\alpha \right)\right\}, $$
$$ {S}_{77}^{\mathrm{int}}={S}_{88}^{\mathrm{int}}={S}_{10,10}^{\mathrm{int}}={S}_{11,11}^{\mathrm{int}}=\frac{1}{2}g\left(\alpha \right), $$
$$ {S}_{99}^{\mathrm{int}}={S}_{12,12}^{\mathrm{int}}=1-g\left(\alpha \right), $$

and all the other components are zero. Here \( {\nu}_0=\left({C}_{11}^{\mathrm{int}}-2{C}_{44}^{\mathrm{int}}\right)/2\left({C}_{11}^{\mathrm{int}}-{C}_{44}^{\mathrm{int}}\right) \) is Poisson’s ratio of the interphase, and function g(α) depends on the aspect ratio, as

$$ g\left(\alpha \right)=\left\{\begin{array}{l}\frac{\alpha }{{\left(1-{\alpha}^2\right)}^{\frac{3}{2}}}\left[{ \cos}^{-1}\alpha -\alpha {\left(1-{\alpha}^2\right)}^{\frac{1}{2}}\right],\kern1.5em \alpha <1,\kern0.5em \\ {}\frac{\alpha }{{\left({\alpha}^2-1\right)}^{\frac{3}{2}}}\left[\alpha {\left({\alpha}^2-1\right)}^{\frac{1}{2}}-{ \cosh}^{-1}\alpha \right],\kern1.5em \alpha \ge 1.\end{array}\right. $$
(8.24)

This set of S-tensor can reduce to the commonly used S-tensor for the uncoupled elastic, dielectric, magnetic, electrical, or thermal conduction problem.

Finally the matrix form for the isotropic magneto-electro-elastic tensor of the interphase L int is

$$ {\mathbf{L}}_{\mathrm{int}}=\left[\begin{array}{cccccccccccc}\hfill {C}_{11}^{\mathrm{int}}\hfill & \hfill {C}_{12}^{\mathrm{int}}\hfill & \hfill {C}_{12}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {C}_{12}^{\mathrm{int}}\hfill & \hfill {C}_{11}^{\mathrm{int}}\hfill & \hfill {C}_{12}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {C}_{12}^{\mathrm{int}}\hfill & \hfill {C}_{12}^{\mathrm{int}}\hfill & \hfill {C}_{11}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {C}_{44}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {C}_{44}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill {C}_{44}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{\kappa}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{\kappa}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{\kappa}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{\mu}^{\mathrm{int}}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{\mu}^{\mathrm{int}}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -{\mu}^{\mathrm{int}}\hfill \end{array}\right], $$
(8.25)

where \( {C}_{12}^{\mathrm{int}}={C}_{11}^{\mathrm{int}}-2{C}_{44}^{\mathrm{int}} \).

Appendix 3: Explicit Results for α 33 and α 11 of the 1-3 and 2-2 Multiferroic Composites with a Perfect and an Imperfect Interface

For fibrous composites and multilayers, explicit formulae for the components of S-tensor are listed in the Appendix 2. With it and the theory given in Eq. (8.8) for the perfect interface, and Eq. (8.9) together with Eq. (8.8) for the imperfect interface, we have obtained the explicit expressions for the magnetoelectric coupling coefficients, α 33 and α 11. As the 1-3 and 2-2 composites are widely used, we give the results here for ready reference.

In reading the following expressions, care must be exercised that superscript “e” always refers to the properties of BaTiO3 regardless whether BTO exists as the matrix or inclusions, and superscript “m” always refers to the properties of CoFe2O4, also regardless whether it exists as inclusion or matrix. Superscript “int” on the other hand refers to the properties of the interface. In addition, for 1-3 composites, c 1 and c 0 denote the volume concentrations of the inclusions and matrix, respectively, which could be CFO or BTO. c int denotes the volume concentration of interface in the thinly coated inclusion. While for 2-2 composites, c 0, c 1, and c int denote the volume concentrations of BTO, CFO, and interface in the whole composite, so that \( {c}_0+{c}_1+{c}_{\mathrm{int}}=1 \).

8.3.1 The 1-3 Multiferroic Fibrous Composites with a Perfect Interface

With CoFe2O4 as inclusions and BaTiO3 as the matrix, we find

$$ {\alpha}_{33}=-\frac{2{c}_0{c}_1{e}_{31}^{(e)}{q}_{31}^{(m)}}{C_{11}^{(e)}+{C}_{11}^{(m)}-{c}_0\left({C}_{12}^{(e)}-{C}_{12}^{(m)}\right)+{c}_1\left({C}_{11}^{(e)}-{C}_{11}^{(m)}\right)}, $$
(8.26)
$$ {\alpha}_{11}=-\frac{4{c}_0{c}_1{e}_{12}^{(e)}{q}_{15}^{(m)}{\kappa}_{11}^{(m)}{\mu}_{11}^{(e)}}{D_{\alpha 11}^{\mathrm{BTO}}}, $$
(8.27)

where denominator D BTO α11 is

$$ \begin{array}{l}{D}_{\alpha 11}^{\mathrm{BTO}}={c}_0^2{q}_{15}^{(m)}{}^2\left[{\kappa}_{11}^{(e)}+{\kappa}_{11}^{(m)}+{c}_1\left({\kappa}_{11}^{(e)}-{\kappa}_{11}^{(m)}\right)\right]+\left\{{\left(1+{c}_1\right)}^2{e}_{15}^{(e)}2\right.\\ {}\kern3.4em +\left[{C}_{44}^{(e)}+{C}_{44}^{(m)}+{c}_1\left({C}_{44}^{(e)}-{C}_{44}^{(m)}\right)\right]\\ {}\kern3.5em \left.\left[{\kappa}_{11}^{(e)}+{\kappa}_{11}^{(m)}+{c}_1\left({\kappa}_{11}^{(e)}-{\kappa}_{11}^{(m)}\right)\right]\right\}\left[{\mu}_{11}^{(e)}+{\mu}_{11}^{(m)}+{c}_1\left({\mu}_{11}^{(e)}-{\mu}_{11}^{(m)}\right)\right].\end{array} $$
(8.28)

On the other hand with BaTiO3 as inclusion phase, we have

$$ {\alpha}_{33}=-\frac{2{c}_0{c}_1{e}_{31}^{(e)}{q}_{31}^{(m)}}{C_{11}^{(e)}+{C}_{11}^{(m)}+{c}_0\left({C}_{12}^{(e)}-{C}_{12}^{(m)}\right)-{c}_1\left({C}_{11}^{(e)}-{C}_{11}^{(m)}\right)}, $$
(8.29)
$$ {\alpha}_{11}=\frac{4{c}_0{c}_1{e}_{15}^{(e)}{q}_{15}^{(m)}{\kappa}_{11}^{(m)}{\mu}_{11}^{(e)}}{D_{\alpha 11}^{\mathrm{CFO}}}, $$
(8.30)

where

$$ \begin{array}{l}{D}_{\alpha 11}^{\mathrm{CFO}}={c}_0^2{e}_{15}^{(e)}{}^2\left[{\mu}_{11}^{(m)}+{\mu}_{11}^{(e)}+{c}_1\left({\mu}_{11}^{(m)}-{\mu}_{11}^{(e)}\right)\right]+\left\{1,{\left(+,{c}_1\right)}^2\right.{q}_{15}^{(m)}2\\ {}\kern3.2em +\left[{C}_{44}^{(m)}+{C}_{44}^{(e)}+{c}_1\left({C}_{44}^{(m)}-{C}_{44}^{(e)}\right)\right]\\ {}\kern3.2em \left.\left[{\mu}_{11}^{(m)}+{\mu}_{11}^{(e)}+{c}_1\left({\kappa}_{11}^{(m)}-{\kappa}_{11}^{(e)}\right)\right]\right\}\left[{\kappa}_{11}^{(m)}+{\kappa}_{11}^{(e)}+{c}_1\left({\kappa}_{11}^{(m)}-{\kappa}_{11}^{(e)}\right)\right].\end{array} $$
(8.31)

8.3.2 The 1-3 Multiferroic Fibrous Composites with an Imperfect Interface

In order to obtain the effective magnetoelectric coefficients of 1-3 multiferroic composites with imperfect interface, we first obtain the relevant properties of coated inclusion from Eq. (8.9). This in turn can be used for the properties of the inclusion phase in Eq. (8.8) for the overall composite.

For the coated CoFe2O4 inclusion—with a prime added to superscript m—we obtain from Eq. (8.9)

$$ \begin{array}{l}{C}_{11}^{\left({m}^{\prime}\right)}=\frac{C_{11}^{\left(\operatorname{int}\right)}\left({C}_{11}^{(m)}+{C}_{12}^{(m)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)}{2{C}_{11}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({C}_{11}^{(m)}+{C}_{12}^{(m)}-2{C}_{11}^{\left(\operatorname{int}\right)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)}\\ {}+\frac{2\left(1-{c}_{\mathrm{int}}\right){C}_{11}^{\left(\operatorname{int}\right)}{C}_{44}^{\left(\operatorname{int}\right)}\left({C}_{11}^{(m)}-{C}_{12}^{(m)}-2{C}_{44}^{\left(\operatorname{int}\right)}\right)}{4{C}_{11}^{\left(\operatorname{int}\right)}{C}_{44}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({C}_{11}^{\left(\operatorname{int}\right)}+{C}_{44}^{\left(\operatorname{int}\right)}\right)\;\left({C}_{11}^{(m)}-{C}_{12}^{(m)}-2{C}_{44}^{\left(\operatorname{int}\right)}\right)},\end{array} $$
(8.32)
$$ \begin{array}{l}{C}_{12}^{\left({m}^{\prime}\right)}=\frac{C_{11}^{\left(\operatorname{int}\right)}\left({C}_{11}^{(m)}+{C}_{12}^{(m)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)}{2{C}_{11}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({C}_{11}^{(m)}+{C}_{12}^{(m)}-2{C}_{11}^{\left(\operatorname{int}\right)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)}\\ {}-\frac{2{C}_{44}^{\left(\operatorname{int}\right)}\left[{C}_{11}^{\left(\operatorname{int}\right)}\left({C}_{11}^{(m)}-{C}_{12}^{(m)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)+{c}_{\mathrm{int}}{C}_{44}^{\left(\operatorname{int}\right)}\left({C}_{11}^{(m)}-{C}_{12}^{(m)}-2{C}_{44}^{\left(\operatorname{int}\right)}\right)\right]}{4{C}_{11}^{\left(\operatorname{int}\right)}{C}_{44}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({C}_{11}^{\left(\operatorname{int}\right)}+{C}_{44}^{\left(\operatorname{int}\right)}\right)\kern0.5em \left({C}_{11}^{(m)}-{C}_{12}^{(m)}-2{C}_{44}^{\left(\operatorname{int}\right)}\right)},\end{array} $$
(8.33)
$$ \begin{array}{l}{C}_{44}^{\left({m}^{\prime}\right)}={C}_{44}^{\left(\operatorname{int}\right)}\times \\ {}\frac{4{C}_{44}^{(m)}{\mu}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{q}_{15}^{(m)}{}^2+{C}_{44}^{(m)}\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)-{\mu}^{\mathrm{int}}\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\right]-{c_{\mathrm{int}}}^2\left[{q}_{15}^{(m)}{}^2+\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)\right]}{4{C}_{44}^{\left(\operatorname{int}\right)}{\mu}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{C}_{44}^{\left(\operatorname{int}\right)}\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)+{\mu}^{\left(\operatorname{int}\right)}\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\right]+{c_{\mathrm{int}}}^2\left[{q}_{15}^{(m)}{}^2+\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)\right]},\end{array} $$
(8.34)
$$ {q}_{31}^{\left({m}^{\prime}\right)}={\kappa}^{\left(\operatorname{int}\right)}\frac{2{\kappa}_{11}^{(m)}-{c}_{\mathrm{int}}\left({\kappa}_{11}^{(m)}-{\kappa}^{\left(\operatorname{int}\right)}\right)}{2{\kappa}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({\kappa}_{11}^{(m)}-{\kappa}^{\left(\operatorname{int}\right)}\right)}, $$
(8.35)
$$ {q}_{15}^{\left({m}^{\prime}\right)}=\frac{4\left(1-{c}_{\mathrm{int}}\right){q}_{15}^{(m)}{C}_{44}^{\left(\operatorname{int}\right)}{\mu}^{\left(\operatorname{int}\right)}}{4{C}_{44}^{\left(\operatorname{int}\right)}{\mu}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{C}_{44}^{\left(\operatorname{int}\right)}\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)+{\mu}^{\left(\operatorname{int}\right)}\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\right]+{c_{\mathrm{int}}}^2\left[{q}_{15}^{(m)}{}^2+\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)\right]}, $$
(8.36)
$$ {\kappa}_{11}^{\left({m}^{\prime}\right)}={\kappa}^{\left(\operatorname{int}\right)}\frac{2{\kappa}_{11}^{(m)}-{c}_{\mathrm{int}}\left({\kappa}_{11}^{(m)}-{\kappa}^{\left(\operatorname{int}\right)}\right)}{2{\kappa}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({\kappa}_{11}^{(m)}-{\kappa}^{\left(\operatorname{int}\right)}\right)}, $$
(8.37)
$$ \begin{array}{l}{\mu}_{11}^{\left({m}^{\prime}\right)}={\mu}^{\left(\operatorname{int}\right)}\times \\ {}\frac{4{\mu}_{11}^{(m)}{C}_{44}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{q}_{15}^{(m)}{}^2+{\mu}_{11}^{(m)}\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)-{C}_{44}^{\left(\operatorname{int}\right)}\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)\right]-{c_{\mathrm{int}}}^2\left[{q}_{15}^{(m)}{}^2+\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)\right]}{4{\mu}^{\left(\operatorname{int}\right)}{C}_{44}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{\mu}^{\left(\operatorname{int}\right)}\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)+{C}_{44}^{\left(\operatorname{int}\right)}\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)\right]+{c_{\mathrm{int}}}^2\left[{q}_{15}^{(m)}{}^2+\left({C}_{44}^{(m)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\mu}_{11}^{(m)}-{\mu}^{\left(\operatorname{int}\right)}\right)\right]}.\end{array} $$
(8.38)

This set can be used to replace the properties of CFO in Eqs. (8.25)–(8.27) to obtain α 33 and α 11 of the CFO-in-BTO composite with an imperfect interface.

Likewise for the coated BaTiO3 inclusion—also with a prime added to e—we have

$$ \begin{array}{l}{C}_{11}^{\left({e}^{\prime}\right)}=\frac{c_{11}^{\left(\operatorname{int}\right)}\left({c}_{11}^{(e)}+{c}_{12}^{(e)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)}{2{C}_{11}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({C}_{11}^{(e)}+{C}_{12}^{(e)}-2{C}_{11}^{\left(\operatorname{int}\right)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)}\\ {}\kern3.2em +\frac{2\left(1-{c}_{\mathrm{int}}\right){C}_{11}^{\left(\operatorname{int}\right)}{C}_{44}^{\left(\operatorname{int}\right)}\left({C}_{11}^{(e)}-{C}_{12}^{(e)}-2{C}_{44}^{\left(\operatorname{int}\right)}\right)}{4{C}_{11}^{\left(\operatorname{int}\right)}\;{C}_{44}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({C}_{11}^{\left(\operatorname{int}\right)}+{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({C}_{11}^{(e)}-{C}_{12}^{(e)}-2{C}_{44}^{\left(\operatorname{int}\right)}\right)},\end{array} $$
(8.39)
$$ \begin{array}{l}{C}_{12}^{\left({e}^{\prime}\right)}=\frac{c_{11}^{\left(\operatorname{int}\right)}\left({c}_{11}^{(e)}+{c}_{12}^{(e)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)}{2{C}_{11}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({C}_{11}^{(e)}+{C}_{12}^{(e)}-2{C}_{11}^{\left(\operatorname{int}\right)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)}\\ {}-\frac{2{C}_{44}^{\left(\operatorname{int}\right)}\left[{C}_{11}^{\left(\operatorname{int}\right)}\left({C}_{11}^{(e)}-{C}_{12}^{(e)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)+{c}_{\mathrm{int}}{C}_{44}^{\left(\operatorname{int}\right)}\left({C}_{11}^{(e)}-{C}_{12}^{(e)}-2{C}_{44}^{\left(\operatorname{int}\right)}\right)\right]}{4{C}_{11}^{\left(\operatorname{int}\right)}\;{C}_{44}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({C}_{11}^{\left(\operatorname{int}\right)}+{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({C}_{11}^{(e)}-{C}_{12}^{(e)}-2{C}_{44}^{\left(\operatorname{int}\right)}\right)},\end{array} $$
(8.40)
$$ \begin{array}{l}{C}_{44}^{\left({e}^{\prime}\right)}={C}_{44}^{\left(\operatorname{int}\right)}\\ {}\kern3em \times \frac{4{C}_{44}^{(e)}{\kappa}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{e}_{15}^{(e)}{}^2+{C}_{44}^{(e)}\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)-{\kappa}^{\mathrm{int}}\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\right]-{c_{\mathrm{int}}}^2\left[{e}_{15}^{(e)}{}^2+\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)\right]}{4{C}_{44}^{\left(\operatorname{int}\right)}{\kappa}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{C}_{44}^{\left(\operatorname{int}\right)}\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)+{\kappa}^{\left(\operatorname{int}\right)}\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\right]+{c_{\mathrm{int}}}^2\left[{e}_{15}^{(e)}{}^2+\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)\right]},\end{array} $$
(8.41)
$$ {e}_{31}^{\left({e}^{\prime}\right)}=\frac{2\left(1-{c}_{\mathrm{int}}\right){e}_{31}^{(e)}{C}_{11}^{\left(\operatorname{int}\right)}}{c_{\mathrm{int}}\left({C}_{11}^{(e)}+{C}_{12}^{(e)}-2{C}_{11}^{\left(\operatorname{int}\right)}+2{C}_{44}^{\left(\operatorname{int}\right)}\right)+2{C}_{11}^{\left(\operatorname{int}\right)}}, $$
(8.42)
$$ \begin{array}{l}{e}_{15}^{\left({e}^{\prime}\right)}\\ {}\kern1em =\frac{4\left(1-{c}_{\mathrm{int}}\right){e}_{15}^{(e)}{C}_{44}^{\left(\operatorname{int}\right)}{\kappa}^{\left(\operatorname{int}\right)}}{4{C}_{44}^{\left(\operatorname{int}\right)}{\kappa}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{C}_{44}^{\left(\operatorname{int}\right)}\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)+{\kappa}^{\left(\operatorname{int}\right)}\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\right]+{c_{\mathrm{int}}}^2\left[{e}_{15}^{(e)}{}^2+\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)\right]},\end{array} $$
(8.43)
$$ \begin{array}{l}{\kappa}_{11}^{\left({e}^{\prime}\right)}={\kappa}^{\left(\operatorname{int}\right)}\\ {}\kern3em \times \frac{4{\kappa}_{11}^{(e)}{C}_{44}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{e}_{15}^{(e)}{}^2+{\kappa}_{11}^{(e)}\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)-{C}_{44}^{\left(\operatorname{int}\right)}\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)\right]-{c_{\mathrm{int}}}^2\left[{e}_{15}^{(e)}{}^2+\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)\right]}{4{\kappa}^{\left(\operatorname{int}\right)}{C}_{44}^{\left(\operatorname{int}\right)}+2{c}_{\mathrm{int}}\left[{\kappa}^{\left(\operatorname{int}\right)}\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)+{C}_{44}^{\left(\operatorname{int}\right)}\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)\right]+{c_{\mathrm{int}}}^2\left[{e}_{15}^{(e)}{}^2+\left({C}_{44}^{(e)}-{C}_{44}^{\left(\operatorname{int}\right)}\right)\left({\kappa}_{11}^{(e)}-{\kappa}^{\left(\operatorname{int}\right)}\right)\right]},\end{array} $$
(8.44)
$$ {\mu}_{11}^{\left({e}^{\prime}\right)}={\mu}^{\left(\operatorname{int}\right)}\frac{2{\mu}_{11}^{(e)}-{c}_{\mathrm{int}}\left({\mu}_{11}^{(e)}-{\mu}^{\left(\operatorname{int}\right)}\right)}{2{\mu}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}\left({\mu}_{11}^{(e)}-{\mu}^{\left(\operatorname{int}\right)}\right)}. $$
(8.45)

This set can be used to replace the properties of BTO in Eqs. (8.28)–(8.30) to obtain α 33 and α 11 of the BTO-in-CFO composite with an imperfect interface.

8.3.3 The 2-2 Multiferroic Multilayers with a Perfect Interface

For the 2-2 multiferroic composites with a perfect interface, we find

$$ {\alpha}_{33}=-\frac{c_0{c}_1{e}_{33}^{(e)}{q}_{33}^{(m)}{\kappa}_{33}^{(m)}{\mu}_{33}^{(e)}}{D_{\alpha 33}}, $$
(8.46)
$$ {\alpha}_{11}=-\frac{c_0{c}_1{e}_{15}^{(e)}{q}_{15}^{(m)}}{c_0{C}_{44}^{(m)}+{c}_1{C}_{44}^{(e)}}, $$
(8.47)

where the denominator D α33 is

$$ \begin{array}{l}{D}_{\alpha 33}={c_0}^2\left({c}_0{\kappa}_{33}^{(m)}+{c}_1{\kappa}_{33}^{(e)}\right)\left({q}_{33}^{(m)}{}^2+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right)+{c}_0{c}_1\left[\left({c}_0{\kappa}_{33}^{(m)}+{c}_1{\kappa}_{33}^{(e)}\right){C}_{33}^{(m)}{\mu}_{33}^{(e)}\right.\\ {}\kern3em \left.+\left({c}_0{\mu}_{33}^{(m)}+{c}_1{\mu}_{33}^{(e)}\right){C}_{33}^{(e)}{\kappa}_{33}^{(m)}\right]+{c_1}^2\left({c}_0{\mu}_{33}^{(m)}+{c}_1{\mu}_{33}^{(e)}\right)\left({e}_{33}^{(e)}{}^2+{C}_{33}^{(e)}{\kappa}_{33}^{(e)}\right),\end{array} $$
(8.48)

where c 0 is for BTO and c 1 for CFO.

8.3.4 The 2-2 Multiferroic Multilayers with an Imperfect Interface

With an imperfect interface, we have

$$ {\alpha}_{33}=-\frac{c_0{c}_1{e}_{33}^{(e)}{q}_{33}^{(m)}{\kappa}_{33}^{(m)}{\mu}_{33}^{(e)}{C}_{11}^{\left(\operatorname{int}\right)}{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}}{D_{\alpha 33}}, $$
(8.49)
$$ {\alpha}_{11}=-\frac{c_0{c}_1{e}_{15}^{(e)}{q}_{15}^{(m)}{C}_{44}^{\left(\operatorname{int}\right)}}{c_0{C}_{44}^{(m)}{C}_{44}^{\left(\operatorname{int}\right)}+{c}_1{C}_{44}^{(e)}{C}_{44}^{\left(\operatorname{int}\right)}+{c}_{\mathrm{int}}{C}_{44}^{(e)}{C}_{44}^{(m)}}, $$
(8.50)

where

$$ \begin{array}{l}{D}_{\alpha 33}={\lambda}_1{c_0}^3+{\lambda}_2{c_1}^3+{\lambda}_3{c_{\mathrm{int}}}^3+{\lambda}_4{c_0}^2{c}_1+{\lambda}_5{c_0}^2{c}_{\mathrm{int}}+{\lambda}_6{c_1}^2{c}_0+{\lambda}_7{c_1}^2{c}_{\mathrm{int}}+{\lambda}_8{c_{\mathrm{int}}}^2{c}_0\\ {}\kern2.8em +{\lambda}_9{c_{\mathrm{int}}}^2{c}_1+{\lambda}_{10}{c}_0{c}_1{c}_{\mathrm{int}}.\end{array} $$
(8.51)

The coefficients λ 1 to λ 10 are given by

$$ {\lambda}_1={\kappa}_{33}^{(m)}\left({q}_{33}^{(m)}{}^2+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right){C}_{11}^{\left(\operatorname{int}\right)}{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}, $$
$$ {\lambda}_2={\mu}_{33}^{(e)}\left({e}_{33}^{(e)}{}^2+{C}_{33}^{(e)}{\kappa}_{33}^{(e)}\right){C}_{11}^{\left(\operatorname{int}\right)}{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}, $$
$$ {\lambda}_3={\mu}_{33}^{(e)}\left({e}_{33}^{(e)2}+{C}_{33}^{(e)}{\kappa}_{33}^{(e)}\right){C_{11}}^{\left(\operatorname{int}\right)}{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}, $$
$$ {\lambda}_4={C}_{11}^{\left(\operatorname{int}\right)}{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}\left[{\kappa}_{33}^{(e)}\left({q_{33}^{(m)}}^2+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right)+{\kappa}_{33}^{(m)}\left({C}_{33}^{(e)}{\mu}_{33}^{(m)}+{C}_{33}^{(m)}{\mu}_{33}^{(e)}\right)\right], $$
$$ {\lambda}_5={\kappa}_{33}^{(m)}\left({q}_{33}^{(m)}{}^2+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right)\left[{C}_{33}^{(e)}{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}+{C}_{11}^{\left(\operatorname{int}\right)}\left({\kappa}^{\mathrm{int}}{\mu}_{33}^{(e)}+{\kappa}_{33}^{(e)}{\mu}^{\mathrm{int}}\right)\right], $$
$$ {\lambda}_6={C}_{11}^{\left(\operatorname{int}\right)}{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}\left[{\mu}_{33}^{(m)}\left({e}_{33}^{(e)}{}^2+{C}_{33}^{(e)}{\kappa}_{33}^{(e)}\right)+{\mu}_{33}^{(e)}\left({C}_{33}^{(e)}{\kappa}_{33}^{(m)}+{C}_{33}^{(m)}{\kappa}_{33}^{(e)}\right)\right], $$
$$ {\lambda}_7={\mu}_{33}^{(e)}\left({e}_{33}^{(e)}{}^2+{C}_{33}^{(e)}{\kappa}_{33}^{(e)}\right)\left[{C}_{33}^{(m)}{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}+{C}_{11}^{\left(\operatorname{int}\right)}\left({\kappa}^{\mathrm{int}}{\mu}_{33}^{(m)}+{\kappa}_{33}^{(m)}{\mu}^{\mathrm{int}}\right)\right], $$
$$ {\lambda}_8={\kappa}_{33}^{(m)}\left({q}_{33}^{(m)}{}^2+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right)\left[{\mu}^{\mathrm{int}}\left({e}_{33}^{(e)}{}^2+{C}_{33}^{(e)}{\kappa}_{33}^{(e)}\right)+{\mu}_{33}^{(e)}\left({C}_{33}^{(e)}{\kappa}^{\mathrm{int}}+{C}_{11}^{\left(\operatorname{int}\right)}{\kappa}_{33}^{(e)}\right)\right], $$
$$ {\lambda}_9={\mu}_{33}^{(m)}\left({q}_{33}^{(m)2}+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right)\left[{\kappa}^{\mathrm{int}}\left({q}_{33}^{(m)2}+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right)+{\mu}_{33}^{(m)}\left({C}_{33}^{(m)}{\mu}^{\mathrm{int}}+{C}_{11}^{\left(\operatorname{int}\right)}{\kappa}_{33}^{(m)}\right)\right], $$
$$ \begin{array}{l}{\lambda}_{10}={C}_{11}^{\left(\operatorname{int}\right)}\left[{\kappa}_{33}^{(m)}{\mu}_{33}^{(m)}\mu \left({e}_{33}^{(e)2}+{C}_{33}^{(e)}\;{\kappa}_{33}^{(e)}\right)+{\kappa}_{33}^{(e)}\;{\mu}_{33}^{(e)}{\kappa}^{\mathrm{int}}\left({q}_{33}^{(m)2}+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right)\right.\\ {}\kern3.75em \left.+\kern0.15em {\kappa}_{33}^{(m)}{\mu}_{33}^{(e)}\left({C}_{33}^{(e)}{\mu}_{33}^{(m)}{\kappa}^{\mathrm{int}}+{C}_{33}^{(m)}{\kappa}_{33}^{(e)}{\mu}^{\mathrm{int}}\right)\right]+{\kappa}^{\mathrm{int}}{\mu}^{\mathrm{int}}\left({e}_{33}^{(e)2}+{C}_{33}^{(e)}{\kappa}_{33}^{(e)}\right)\left({q}_{33}^{(m)2}+{C}_{33}^{(m)}{\mu}_{33}^{(m)}\right).\end{array} $$
(8.52)

Most of Appendix 2 and 3 can also be found in Wang et al. (2015).

Appendix 4: The Elastic C 44 of the Fibrous Multiferroic Composite and the Purely Elastic Composite

We have seen the extraordinary value of C 44 of the multiferroic composite in Fig. 8.19, and that its value can be higher than the individual value of the constituent phases. But this is not the case with the purely elastic composite shown in Fig. 8.20. This extraordinary value is an outcome of the piezoelectric and piezomagnetic interactions. To make such a difference more apparent, we give the explicit form of C 44 with 1-3 connectivity.

Here we use the superscript (e) to denote the piezoelectric phase such as BTO, and the superscript (m) to denote the piezomagnetic phase such as CFO. We further use C E44 to denote the C 44 value of the purely elastic composite, and C M44 to denote the C 44 of the multiferroic composite. After making use of the explicit form of S-tensor for a circular cylinder, we have used Eq. (8.8) to derive the effective C 44 in both cases.

First with the piezoelectric BTO as the matrix, we have found that, for the elastic composite,

$$ {C}_{44}^{\mathrm{E}}=\frac{C_{44}^{(e)}\left[\left({C}_{44}^{(e)}+{C}_{44}^{(m)}\right)-{c}_1\left({C}_{44}^{(e)}-{C}_{44}^{(m)}\right)\right]}{\left({C}_{44}^{(e)}+{C}_{44}^{(m)}\right)+{c}_1\left({C}_{44}^{(e)}-{C}_{44}^{(m)}\right)}, $$
(8.53)

and for the multiferroic composite, we have

$$ {C}_{44}^{\mathrm{M}}={C}_{44}^{\mathrm{E}}+\frac{4{c}_1\left(1-{c}_1\right)\left({C}_{44}^{(e)}{}^2{q}_{15}^{(m)}2{\tilde{\kappa}}_{11}^{(e)}+{C}_{44}^{(e)}{}^2{e}_{15}^{(e)}{}^2{\tilde{\mu}}_{11}^{(e)}+{e}_{15}^{(e)}{}^2{q}_{15}^{(e)}{}^2{\tilde{C}}_{44}^{(e)}\right)}{{\tilde{C}}_{44}^{(e)}\left[{\tilde{C}}_{44}^{(e)}{\tilde{\kappa}}_{11}^{(e)}{\tilde{\mu}}_{11}^{(e)}+{\left(1+{c}_1\right)}^2{e}_{15}^{(e)}{}^2{\tilde{\mu}}_{11}^{(e)}+{\left(1-{c}_1\right)}^2{q}_{15}^{(e)}{}^2{\tilde{\mu}}_{11}^{(e)}\right]}, $$
(8.54)

where

$$ {\tilde{C}}_{44}^{(e)}={C}_{44}^{(e)}+{C}_{44}^{(m)}+{c}_1\left({C}_{44}^{(e)}-{C}_{44}^{(m)}\right), $$
$$ {\tilde{\kappa}}_{11}^{(e)}={\kappa}_{11}^{(e)}+{\kappa}_{11}^{(m)}+{c}_1\left({\kappa}_{11}^{(e)}-{\kappa}_{11}^{(m)}\right), $$
(8.55)
$$ {\tilde{\mu}}_{11}^{(e)}={\mu}_{11}^{(e)}+{\mu}_{11}^{(m)}+{c}_1\left({\mu}_{11}^{(e)}-{\mu}_{11}^{(m)}\right). $$

On the other hand with the piezomagnetic CFO as the matrix, we have

$$ {C}_{44}^{\mathrm{E}}=\frac{C_{44}^{(m)}\left[\left({C}_{44}^{(m)}+{C}_{44}^{(e)}\right)-{c}_1\left({C}_{44}^{(m)}-{C}_{44}^{(e)}\right)\right]}{\left({C}_{44}^{(m)}+{C}_{44}^{(e)}\right)+{c}_1\left({C}_{44}^{(m)}-{C}_{44}^{(e)}\right)}, $$
(8.56)

and for the multiferroic composite, we find

$$ {C}_{44}^{\mathrm{M}}={C}_{44}^E+\frac{4{c}_1\left(1-{c}_1\right)\left({C}_{44}^{(e)}{}^2{q}_{15}^{(e)}{}^2{\tilde{\kappa}}_{11}^{(m)}+{C}_{44}^{(e)}{}^2{e}_{15}^{(e)}{}^2{\tilde{\mu}}_{11}^{(m)}+{e}_{15}^{(e)}{}^2{q}_{15}^{(m)}{}^2{\tilde{C}}_{44}^{(m)}\right)}{{\tilde{C}}_{44}^{(m)}\left[{\tilde{C}}_{44}^{(m)}\;{\tilde{\kappa}}_{11}^{(m)}\;{\tilde{\mu}}_{11}^{(m)}+{\left(1+{c}_1\right)}^2{q}_{15}^{(m)}2{\tilde{\kappa}}_{11}^{(m)}+{\left(1-{c}_1\right)}^2{e}_{15}^{(e)}2{\tilde{\mu}}_{11}^{(m)}\right]}, $$
(8.57)

where

$$ {\tilde{C}}_{44}^{(m)}={C}_{44}^{(m)}+{C}_{44}^{(e)}+{c}_1\left({C}_{44}^{(m)}-{C}_{44}^{(e)}\right), $$
$$ {\tilde{\kappa}}_{11}^{(m)}={\kappa}_{11}^{(m)}+{\kappa}_{11}^{(e)}+{c}_1\left({\kappa}_{11}^{(m)}-{\kappa}_{11}^{(e)}\right), $$
(8.58)
$$ {\tilde{\mu}}_{11}^{(m)}={\mu}_{11}^{(m)}+{\mu}_{11}^{(e)}+{c}_1\left({\mu}_{11}^{(m)}-{\mu}_{11}^{(e)}\right). $$

This set of results also gives rise to the outcome of \( {C}_{44}^{\mathrm{M}}\ge {C}_{44}^{\mathrm{E}} \), regardless of the particular phase serving as the matrix.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Y., Weng, G.J. (2016). Magnetoelectric Coupling and Overall Properties of a Class of Multiferroic Composites. In: Meguid, S. (eds) Advances in Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8_8

Download citation

Publish with us

Policies and ethics