Skip to main content

Recent Developments in Multiscale Thermomechanical Analysis of Nanocomposites

  • Chapter
  • First Online:
Advances in Nanocomposites

Abstract

Multifunctional nanocomposite materials have been used extensively in aerospace, mechanical, civil engineering industries, and other engineering applications. This is mainly due to the enhanced mechanical characteristics such as high strength-to-weight ratio and the unique thermal and physiochemical properties of these nanostructures. It has been reported that there are significant improvements in the thermal conductivity of composite structures with the addition of low volume fractions of graphene. To understand and develop efficient composite systems with desired thermal characteristics, it is necessary to develop accurate thermal transport models of these advanced composite systems. In this chapter, the authors discuss some of the recent developments in multiscale modeling of the thermal and mechanical properties of advanced nanocomposite systems. To enhance the theoretical model development discussed in this chapter, the authors have also included some relevant works from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benveniste, Y.: Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. J. Appl. Phys. 61, 2840–2843 (1987)

    Article  Google Scholar 

  • Blonski, S., Brostow, W., Kuba’t, J.: Molecular-dynamics simulations of stress relaxation in metals and polymers. Phys. Rev. B 49, 6494–6500 (1994)

    Article  Google Scholar 

  • Brey, L., Fertig, H.A.: Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006)

    Article  Google Scholar 

  • Bryning, M.B., Milkie, D.E., Islam, M.F., Kikkawa, J.M., Yodh, A.G.: Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87, 161909 (2005)

    Article  Google Scholar 

  • Chapelle, E., Garnier, B., Bourouga, B.: Interfacial thermal resistance measurement between metallic wire and polymer in polymer matrix composites. Int. J. Therm. Sci. 48, 2221–2227 (2009)

    Article  Google Scholar 

  • Clancy, T.C., Gates, T.S.: Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47, 5990–5996 (2006)

    Article  Google Scholar 

  • Duan, H.L., Karihaloo, B.L.: Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys. Rev. B 75, 064206 (2007)

    Article  Google Scholar 

  • Dunn, M.L., Taya, M.: The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces. J. Appl. Phys. 73, 1711–1722 (1993)

    Article  Google Scholar 

  • Ebrahimi, S.: Influence of Stone–Wales defects orientations on stability of graphene nanoribbons under a uniaxial compression strain. Solid State Commun. 220, 17–20 (2015)

    Article  Google Scholar 

  • Ezawa, M.: Graphene nanoribbon and graphene nanodisk. Phys. E. 40, 1421–1423 (2008)

    Article  Google Scholar 

  • Feng, Y., Zhu, J., Tang, D.-W.: Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate. Phys. Lett. A 379, 382–388 (2015)

    Article  Google Scholar 

  • Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)

    Article  Google Scholar 

  • Hasselman, D.P.H., Johnson, L.F.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987)

    Article  Google Scholar 

  • Huxtable, S.T., Cahill, D.G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., et al.: Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731–734 (2003)

    Article  Google Scholar 

  • Jiajun, W., Xiao-Su, Y.: Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Compos. Sci. Technol. 64, 1623–1628 (2004)

    Article  Google Scholar 

  • Li, J., Wang, X., Qiao, Y., Zhang, Y., He, Z., Zhang, H.: High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scr. Mater. 109, 72–75 (2015)

    Article  Google Scholar 

  • Mohebbi, A.: Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. J. Mol. Liq. 175, 51–58 (2012)

    Article  Google Scholar 

  • Mortazavi, B., Rajabpour, A., Ahzi, S., Rémond, Y., Mehdi Vaez Allaei, S.: Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun. 152, 261–264 (2012)

    Article  Google Scholar 

  • Nan, C.-W.: Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 37, 1–116 (1993)

    Article  Google Scholar 

  • Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)

    Article  Google Scholar 

  • Nan, C.W., Shi, Z., Lin, Y.: A simple model for thermal conductivity of carbon nanotube-based composites. Chem. Phys. Lett. 375, 666–669 (2003)

    Article  Google Scholar 

  • Nan, C.-W., Liu, G., Lin, Y., Li, M.: Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85, 3549–3551 (2004)

    Article  Google Scholar 

  • Pan, L., Shen, Z., Jia, Y., Dai, X.: First-principles study of electronic and elastic properties of Stone–Wales defective zigzag carbon nanotubes. Phys. B Condens. Matter 407, 2763–2767 (2012)

    Article  Google Scholar 

  • Pulavarthy, R.A., Haque, M.A.: A novel technique for Interfacial Thermal Resistance measurement for nanoscale thin films. Int. J. Heat Mass Transf. 89, 743–748 (2015)

    Article  Google Scholar 

  • Reddy, J.N.: An introduction to the finite element method, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  • Reddy, J.N.: An introduction to continuum mechanics, 2nd edn. Cambridge University Press, New York, NY (2013)

    Google Scholar 

  • Salaway, R.N., Zhigilei, L.V.: Molecular dynamics simulations of thermal conductivity of carbon nanotubes: resolving the effects of computational parameters. Int. J. Heat Mass Transf. 70, 954–964 (2014)

    Article  Google Scholar 

  • Shenogin, S., Xue, L., Ozisik, R., Keblinski, P., Cahill, D.G.: Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J. Appl. Phys. 95, 8136–8144 (2004)

    Article  Google Scholar 

  • Stauber, T., Peres, N.M.R., Guinea, F.: Electronic transport in graphene: a semiclassical approach including midgap states. Phys. Rev. B 76, 205423 (2007)

    Article  Google Scholar 

  • Torquato, S., Rintoul, M.D.: Effect of the interface on the properties of composite media. Phys. Rev. Lett. 75, 4067–4070 (1995)

    Article  Google Scholar 

  • Unnikrishnan, V.U.: Interfacial thermal properties and size-effect in thermo-mechanical characterisation of nanocomposites. Nanomater. Energy 4, 39–44 (2015)

    Article  Google Scholar 

  • Unnikrishnan, V.U., Reddy, J.N.: Characteristics of silicon doped carbon nanotube reinforced nanocomposites. Int. J. Multiscale Comput. Eng. 3, 437–450 (2005)

    Article  Google Scholar 

  • Unnikrishnan, V.U., Banerjee, D., Reddy, J.N.: Atomistic-mesoscale interfacial resistance based thermal analysis of carbon nanotube systems. Int. J. Therm. Sci. 47, 1602–1609 (2008a)

    Article  Google Scholar 

  • Unnikrishnan, V.U., Reddy, J.N., Banerjee, D., Rostam-Abadi, F.: Thermal characteristics of defective carbon nanotube-polymer nanocomposites. Interact. Multiscale Mech. 1, 397–409 (2008b)

    Article  Google Scholar 

  • Unnikrishnan, V.U., Unnikrishnan, G.U., Reddy, J.N.: Multiscale nonlocal thermo-elastic analysis of graphene nanoribbons. J. Therm. Stresses 32, 1087–1100 (2009)

    Article  Google Scholar 

  • Yao, N., Lordi, V.: Young’s modulus of single-walled carbon nanotubes. J. Appl. Phys. 84, 1939–1943 (1998)

    Article  Google Scholar 

  • Yin, H.M., Paulino, G.H., Buttlar, W.G., Sun, L.Z.: Effective thermal conductivity of functionally graded particulate nanocomposites with interfacial thermal resistance. J. Appl. Mech. 75, 051113 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Oscar S. Wyatt Endowed Chair, and they are also grateful to the Texas A&M University’s Supercomputing Facility for providing the computational support and the Laboratory for Molecular Simulation in the Department of Chemistry at Texas A&M University for the software support. The second author would also like to acknowledge the support of the faculty start-up funds from The University of Alabama. The authors are also grateful to Professor Shaker Meguid for his invitation to prepare the manuscript and for his constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reddy, J.N., Unnikrishnan, V.U., Unnikrishnan, G.U. (2016). Recent Developments in Multiscale Thermomechanical Analysis of Nanocomposites. In: Meguid, S. (eds) Advances in Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8_7

Download citation

Publish with us

Policies and ethics