Skip to main content

Effects of Nanoporosity on the Mechanical Properties and Applications of Aerogels in Composite Structures

  • Chapter
  • First Online:
Advances in Nanocomposites
  • 1067 Accesses

Abstract

Aerogels are ultralight solids with nanoporous structure and are one of the world’s lightest materials available in the market. It is a dry gel, principally made up of 99.8 % of air and weighing just around three times that of air. The first aerogels were realized in 1931, when Kistler (J Phys Chem 36:52–64, 1932) attempted to remove liquid from a wet gel. It started out with the testing of the hypothesis that the liquid in a jelly can be replaced by a gas so as to avoid the collapse of the wet gel. He postulated that it was possible to slowly expand the supercritical fluid within a gel and obtain an air-filled non-collapsed gel structure. He subsequently succeeded in producing silica aerogels with densities in the range 20–100 kg/m3, as well as aerogels of alumina, tungsten, ferric, and stannic oxides. Today, silica aerogel is frequently used in nanocomposites for their light weight and excellent thermal insulating properties. In this chapter, we document some of the silica aerogel-filled carbon composite sandwich structures we have recently developed and also numerically examine the underlying mechanisms which enable silica aerogels to possess extreme insulation properties and especially how pore size plays a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aegerter, M.A., Leventis, N., Koebel, M.M.: Aerogels Handbook. Springer Science + Business Media, LLC, New York (2011)

    Book  Google Scholar 

  • Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957)

    Article  Google Scholar 

  • Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959)

    Article  Google Scholar 

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)

    Google Scholar 

  • Beckers, J.V.L., de Leeuw, S.W.: Molecular dynamics simulation of nanoporous silica. J. Non-Cryst. Solids 261, 87–100 (2000)

    Article  Google Scholar 

  • Bhattacharya, S., Gubbins, K.E.: Fast method for computing pore size distributions of model materials. Langmuir 22, 7726–7731 (2006)

    Article  Google Scholar 

  • Bhattacharya, S., Kieffer, J.: Fractal dimensions of silica gels generated using reactive molecular dynamics simulations. J. Chem. Phys. 122, 094715 (2005)

    Article  Google Scholar 

  • Borne, A., Chevalier, B., Chevalier, J.L., Quenard, D., Elaloui, E., Lambard, J.: Characterization of silica aerogel with the atomic force microscope and SAXS. J. Non-Cryst. Solids 188, 235–242 (1995)

    Article  Google Scholar 

  • Cabot-Corp.: “Aerogel.” http://www.cabot-corp.com/aerogel (2011). Retrieved Dec 2015

  • Cantin, M., Casse, M., Koch, L., Jouan, R., Mestreau, P., Roussel, D., Bonnin, F., Moutel, J., Teichner, S.J.: Silica aerogels used as Cherenkov radiators. Nucl. Instrum. Methods 118, 177–182 (1974)

    Article  Google Scholar 

  • Chen, J., Zhang, G., Li, B.: Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J. Appl. Phys. 112, 064319 (2012)

    Article  Google Scholar 

  • Cheng, Y., Koh, L.-D., Li, D., Ji, B., Zhang, Y., Yeo, J., Guan, G., Han, M.-Y., Zhang, Y.-W.: Peptide–graphene interactions enhance the mechanical properties of silk fibroin. ACS Appl. Mater. Interfaces 7, 21787–21796 (2015)

    Article  Google Scholar 

  • Coquil, T., Fang, J., Pilon, L.: Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int. J. Heat Mass Transfer 54, 4540–4548 (2011)

    Article  Google Scholar 

  • Cotet, L.C., Baia, M., Baia, L., Popescu, I.C., Cosoveanu, V., Indrea, E., Popp, J., Danciu, V.: Structural properties of some transition metal highly doped carbon aerogels. J. Alloys Compd. 434–435, 854–857 (2007)

    Article  Google Scholar 

  • Dove, M.T.: Introduction to Lattice Dynamics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  • Duer, K., Svendsen, S.: Monolithic silica aerogel in superinsulating glazings. Sol. Energy 63, 259–267 (1998)

    Article  Google Scholar 

  • Fesmire, J.E.: Aerogel insulation systems for space launch applications. Cryogenics 46, 111–117 (2006)

    Article  Google Scholar 

  • Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic, San Diego (2002)

    Google Scholar 

  • Fricke, J.: Aerogels - highly tenuous solids with fascinating properties. J. Non-Cryst. Solids 100, 169–173 (1988)

    Article  Google Scholar 

  • Fricke, J., Emmerling, A.: Aerogels. J. Am. Ceram. Soc. 75, 2027–2036 (1992)

    Article  Google Scholar 

  • Fu, R., Lin, Y.-M., Rabin, O., Dresselhaus, G., Dresselhaus, M.S., Satcher Jr., J.H., Baumann, T.F.: Transport properties of copper-doped carbon aerogels. J. Non-Cryst. Solids 317, 247–253 (2003)

    Article  Google Scholar 

  • Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Guissani, Y., Guillot, B.: A numerical investigation of the liquid-vapor coexistence curve of silica. J. Chem. Phys. 104, 7633–7644 (1996)

    Article  Google Scholar 

  • Heinemann, U., Caps, R., Fricke, J.: Radiation conduction interaction: An investigation on silica aerogels. Int. J. Heat Mass Transfer 39, 2115–2130 (1996)

    Article  Google Scholar 

  • Herrmann, G., Iden, R., Mielke, M., Teich, F., Ziegler, B.: On the way to commercial production of silica aerogel. J. Non-Cryst. Solids 186, 380–387 (1995)

    Article  Google Scholar 

  • Hirashima, H., Kojima, C., Imai, H.: Application of alumina aerogels as catalysts. J. Sol-Gel Sci. Technol. 8, 843–846 (1997)

    Google Scholar 

  • Horbach, J., Kob, W.: Static and dynamic properties of a viscous silica melt. Phys. Rev. B Condens. Matter Mater. Phys. 60, 3169–3181 (1999)

    Article  Google Scholar 

  • Horbach, J., Kob, W., Binder, K.: Specific heat of amorphous silica within the harmonic approximation. J. Phys. Chem. B 103, 4104–4108 (1999)

    Article  Google Scholar 

  • Hrubesh, L.W.: Aerogel applications. J. Non-Cryst. Solids 225, 335–342 (1998)

    Article  Google Scholar 

  • Huang, Z., Tang, Z., Yu, J., Bai, S.: Thermal conductivity of amorphous and crystalline thin films by molecular dynamics simulation. Phys. B 404, 1790–1793 (2009)

    Article  Google Scholar 

  • Jain, A., Rogojevic, S., Ponoth, S., Gill, W.N., Plawsky, J.L., Simonyi, E., Chen, S.T., Ho, P.S.: Processing dependent thermal conductivity of nanoporous silica xerogel films. J. Appl. Phys. 91, 3275–3281 (2002)

    Article  Google Scholar 

  • Jelle, B.P., Baetens, R., Gustavsen, A.: Aerogel insulation for building applications: a state-of-the-art review. Energy Build. 43, 761–769 (2011)

    Article  Google Scholar 

  • Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. A. Math. Phys. Eng. Sci. 106, 463–477 (1924)

    Article  Google Scholar 

  • Jones, S.M.: Aerogel: space exploration applications. J. Sol-Gel Sci. Technol. 40, 351–357 (2006)

    Article  Google Scholar 

  • Joshi, S.C., Xu, K.: Fabrication and thermal performance of aerogel-filled carbon composite sandwich structures. International Symposium on Innovative Materials for Processes in Energy Systems (IMPRES), Singapore (2010)

    Google Scholar 

  • Jund, P., Jullien, R.: Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys. Rev. B Condens. Matter Mater. Phys. 59, 13707–13711 (1999)

    Article  Google Scholar 

  • Kieffer, J., Angell, C.A.: Generation of fractal structures by negative-pressure rupturing of SiO2 glass. J. Non-Cryst. Solids 106, 336–342 (1988)

    Article  Google Scholar 

  • Kieffer, J., Bhattacharya, S.: Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J. Phys. Chem. C 112, 1764–1771 (2008)

    Article  Google Scholar 

  • Kistler, S.S.: Coherent expanded aerogels. J. Phys. Chem. 36, 52–64 (1932)

    Article  Google Scholar 

  • Kramer, G.J., Farragher, N.P., van Beest, B.W., van Santen, R.A.: Interatomic force fields for silicas, aluminophosphates, and zeolites: derivation based on ab initio calculations. Phys. Rev. B Condens. Matter Mater. Phys. 43, 5068–5080 (1991)

    Article  Google Scholar 

  • Laughlin, R.B., Joannopoulos, J.D.: Phonons in amorphous silica. Phys. Rev. B Condens. Matter Mater. Phys. 16, 2942–2952 (1977)

    Article  Google Scholar 

  • Le Roux, S., Petkov, V.: ISAACS - interactive structure analysis of amorphous and crystalline systems. J. Appl. Crystallogr. 43, 181–185 (2010)

    Article  Google Scholar 

  • Lei, J., Liu, Z., Yeo, J., Ng, T.Y.: Determination of the Young’s modulus of silica aerogels - an analytical-numerical approach. Soft Matter 9, 11367–11373 (2013)

    Article  Google Scholar 

  • Lu, X., Caps, R., Fricke, J., Alviso, C.T., Pekala, R.W.: Correlation between structure and thermal-conductivity of organic aerogels. J. Non-Cryst. Solids 188, 226–234 (1995)

    Article  Google Scholar 

  • Mahajan, S.S., Subbarayan, G., Sammakia, B.G.: Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76, 056701 (2007)

    Article  Google Scholar 

  • McGaughey, A.J.H., Kaviany, M.: Thermal conductivity decomposition and analysis using molecular dynamics simulations part II. Complex silica structures. Int. J. Heat Mass Transfer 47, 1799–1816 (2004)

    Article  Google Scholar 

  • Moner-Girona, M., Roig, A., Molins, E., Martınez, E., Esteve, J.: Micromechanical properties of silica aerogels. Appl. Phys. Lett. 75, 653–655 (1999)

    Article  Google Scholar 

  • Muller-Plathe, F., Bordat, P.: Reverse non-equilibrium molecular dynamics. In Novel Methods in Soft Matter Simulations, 640, 310–326 (2004), Berlin, Heidelberg: Springer Berlin Heidelberg, ISBN: 978-3-540-39895-0, doi: 10.1007/978-3-540-39895-0_10

    Google Scholar 

  • Munetoh, S., Motooka, T., Moriguchi, K., Shintani, A.: Interatomic potential for Si-O systems using Tersoff parameterization. Comput. Mater. Sci. 39, 334–339 (2007)

    Article  Google Scholar 

  • Murillo, J.S.R., Bachlechner, M.E., Campo, F.A., Barbero, E.J.: Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J. Non-Cryst. Solids 356, 1325–1331 (2010)

    Article  Google Scholar 

  • Nakano, A., Bi, L.S., Kalia, R.K., Vashishta, P.: Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer. Phys. Rev. B Condens. Matter Mater. Phys. 49, 9441–9452 (1994)

    Article  Google Scholar 

  • Ng, T.Y., Yeo, J.J., Liu, Z.S.: A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing. J. Non-Cryst. Solids 358, 1350–1355 (2012)

    Article  Google Scholar 

  • Ong, Z.-Y., Pop, E.: Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO_{2}. Phys. Rev. B Condens. Matter Mater. Phys. 81, 155408 (2010)

    Article  Google Scholar 

  • Pajonk, G.M.: Transparent silica aerogels. J. Non-Cryst. Solids 225, 307–314 (1998)

    Article  Google Scholar 

  • Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  • Poco, J.F., Satcher Jr., J.H., Hrubesh, L.W.: Synthesis of high porosity, monolithic alumina aerogels. J. Non-Cryst. Solids 285, 57–63 (2001)

    Article  Google Scholar 

  • Pohl, P.I., Faulon, J.L., Smith, D.M.: Molecular-dynamics computer-simulations of silica aerogels. J. Non-Cryst. Solids 186, 349–355 (1995)

    Article  Google Scholar 

  • Rao, A.V., Kulkarni, M.M., Pajonk, G.M., Amalnerkar, D.P., Seth, T.: Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor. J. Sol-Gel Sci. Technol. 27, 103–109 (2003)

    Article  Google Scholar 

  • Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Reim, M., Reichenauer, G., Körner, W., Manara, J., Arduini-Schuster, M., Korder, S., Beck, A., Fricke, J.: Silica-aerogel granulate – structural, optical and thermal properties. J. Non-Cryst. Solids 350, 358–363 (2004)

    Article  Google Scholar 

  • Rubin, M., Lampert, C.M.: Transparent silica aerogels for window insulation. Sol. Energy Mater. 7, 393–400 (1983)

    Article  Google Scholar 

  • Sachithanadam, M.: Characterization of mechanical, thermal and acoustic properties of aerogel composites. Doctoral Thesis, Nanyang Technological University (2015)

    Google Scholar 

  • Sadus, R.J.: Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. Elsevier, New York (1999)

    Google Scholar 

  • Schmidt, M., Schwertfeger, F.: Applications for silica aerogel products. J. Non-Cryst. Solids 225, 364–368 (1998)

    Article  Google Scholar 

  • Sellan, D.P., Landry, E.S., Turney, J.E., McGaughey, A.J.H., Amon, C.H.: Size effects in molecular dynamics thermal conductivity predictions. Phys. Rev. B Condens. Matter Mater. Phys. 81, 214305 (2010)

    Article  Google Scholar 

  • Shakouri, A., Yeo, J., Ng, T.Y., Liu, Z., Taylor, H.: Superlubricity-activated thinning of graphite flakes compressed by passivated crystalline silicon substrates for graphene exfoliation. Carbon 80, 68–74 (2014)

    Article  Google Scholar 

  • Shell, M.S., Debenedetti, P.G., Panagiotopoulos, A.Z.: Molecular structural order and anomalies in liquid silica. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66, 011202 (2002)

    Article  Google Scholar 

  • Smirnova, I., Suttiruengwong, S., Arlt, W.: Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non-Cryst. Solids 350, 54–60 (2004)

    Article  Google Scholar 

  • Soleimani Dorcheh, A., Abbasi, M.H.: Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199, 10–26 (2008)

    Article  Google Scholar 

  • Steiner, S.: Website on properties of aerogels. http://www.aerogel.org/?p=103. Retrieved Dec 2015

  • Strøm, R.A., Masmoudi, Y., Rigacci, A., Petermann, G., Gullberg, L., Chevalier, B., Einarsrud, M.A.: Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J. Sol-Gel Sci. Technol. 41, 291–298 (2007)

    Article  Google Scholar 

  • Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B Condens. Matter Mater. Phys. 37, 6991–7000 (1988)

    Article  Google Scholar 

  • Tillotson, T.M., Hrubesh, L.W.: Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J. Non-Cryst. Solids 145, 44–50 (1992)

    Article  Google Scholar 

  • van Beest, B.W., Kramer, G.J., van Santen, R.A.: Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990)

    Article  Google Scholar 

  • van Bommel, M.J., den Engelsen, C.W., van Miltenburg, J.C.: A thermoporometry study of fumed silica/aerogel composites. J. Porous. Mater. 4, 143–150 (1997)

    Article  Google Scholar 

  • Vashishta, P., Kalia, R.K., Rino, J.P., Ebbsjo, I.: Interaction potential for SiO2 - a molecular-dynamics study of structural correlations. Phys. Rev. B Condens. Matter Mater. Phys. 41, 12197–12209 (1990)

    Article  Google Scholar 

  • Weber, M.J.: Glasses. Handbook of Optical Materials. CRC Press, Boca Raton, FL (2002)

    Book  Google Scholar 

  • Wei, G., Liu, Y., Zhang, X., Yu, F., Du, X.: Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transfer 54, 2355–2366 (2011)

    Article  Google Scholar 

  • Wittwer, V.: Translucent insulation for passive solar energy utilization in buildings. Solar Wind Technol. 6, 419–426 (1989)

    Article  Google Scholar 

  • Woignier, T., Phalippou, J., Vacher, R., Pelous, J., Courtens, E.: Different kinds of fractal structures in silica aerogels. J. Non-Cryst. Solids 121, 198–201 (1990)

    Article  Google Scholar 

  • Wyckoff, R.W.G.: Crystal Structures New York. John Wiley & Sons, London (1963)

    Google Scholar 

  • Xu, Z., Gan, L., Jia, Y., Hao, Z., Liu, M., Chen, L.: Preparation and characterization of silica-titania aerogel-like balls by ambient pressure drying. J. Sol-Gel Sci. Technol. 41, 203–207 (2007)

    Article  Google Scholar 

  • Ye, L., Ji, Z.-H., Han, W.-J., Hu, J.-D., Zhao, T.: Synthesis and characterization of silica/carbon composite aerogels. J. Am. Ceram. Soc. 93, 1156–1163 (2010)

    Article  Google Scholar 

  • Yeo, J., Liu, Z., Ng, T.: Enhanced thermal characterization of silica aerogels through molecular dynamics simulation. Modell. Simul. Mater. Sci. Eng. 21, 075004 (2013)

    Article  Google Scholar 

  • Zeng, J.S.Q., Stevens, P.C., Hunt, A.J., Grief, R., Daehee, L.: Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel. Int. J. Heat Mass Transfer 39, 2311–2317 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the A*STAR Computational Resource Centre through the use of its high-performance computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Yong Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ng, T.Y., Joshi, S.C., Yeo, J., Liu, Z. (2016). Effects of Nanoporosity on the Mechanical Properties and Applications of Aerogels in Composite Structures. In: Meguid, S. (eds) Advances in Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8_4

Download citation

Publish with us

Policies and ethics