Skip to main content

Nanoscale Mechanical Characterization of 1D and 2D Materials with Application to Nanocomposites

  • Chapter
  • First Online:
  • 1045 Accesses

Abstract

In this chapter the critical recent advances in the area of nanoscale mechanical characterization of 1D and 2D nanostructures with application to nanocomposites are presented. CNTs and graphene have been the most widely studied within this class of materials; however, a number of additional 1D and 2D nanostructures such as molybdenum disulfide (MoS2) ultrathin films have also recently emerged and will be discussed. The chapter will cover a variety of nanomechanical characterization techniques that have been developed recently, with a particular focus on methods which characterize the nature of interactions (shear strength, interfacial friction, etc.) between the nanocomposite constituents which can play a significant role in governing macroscopic nanocomposite behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alemán, B., Reguero, V., Mas, B., Vilatela, J.J.: Strong CNT fibers by drawing inspiration from polymer fiber spinning. ACS Nano 9(7), 7392–7398 (2015)

    Article  Google Scholar 

  • An, Z., Compton, O.C., Putz, K.W., Brinson, L.C., Nguyen, S.T.: Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 23, 3842–3846 (2011)

    Google Scholar 

  • Azoubel, S., Magdassi, S.: Controlling adhesion properties of SWCNT-PET films prepared by wet deposition. ACS Appl. Mater. Interfaces 6, 9265–9271 (2014)

    Article  Google Scholar 

  • Barboza, A.P., Chacham, H., Oliveira, C.K., Fernandes, T.F., Ferreira, E.H., Archanjo, B.S., Batista, R.J., de Oliveira, A.B., Neves, B.R.: Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. Nano Lett. 12, 2313–2317 (2012)

    Article  Google Scholar 

  • Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)

    Article  Google Scholar 

  • Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K.R.S., Erdemir, A., Sumant, A.V.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015)

    Article  Google Scholar 

  • Bertolazzi, S., Brivio, J., Kis, A.: Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011)

    Article  Google Scholar 

  • Bharat, B., Othmar, M.: Micro/nanotribology. In: Bhushan B. (ed.) Modern Tribology Handbook, vol 2, CRC Press, Boca Raton (2000)

    Google Scholar 

  • Bhushan, B.: Nanotribology and nanomechanics. Wear 259, 1507–1531 (2005)

    Article  Google Scholar 

  • Boddeti, N.G., Liu, X., Long, R., Xiao, J., Bunch, J.S., Dunn, M.L.: Graphene blisters with switchable shapes controlled by pressure and adhesion. Nano Lett. 13, 6216–6221 (2013)

    Article  Google Scholar 

  • Borini, S., White, R., Wei, D., Astley, S., Spigone, E., Harris, N., Kivioja, J., Ryhanen, T.: Ultrafast graphene oxide humidity sensors. ACS Nano 7, 11166–11173 (2013)

    Article  Google Scholar 

  • Cao, C.H., Reiner, A., Chung, C.H., Chang, S.H., Kao, I., Kukta, R.V., Korach, C.S.: Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays. Carbon 49, 3190–3199 (2011)

    Article  Google Scholar 

  • Cao, C., Sun, Y., Filleter, T.: Characterizing mechanical behavior of atomically thin films: a review. J. Mater. Res. 29, 338–347 (2014)

    Article  Google Scholar 

  • Cao, C., Daly, M., Singh, C.V., Sun, Y., Filleter, T.: High strength measurement of monolayer graphene oxide. Carbon 81, 497–504 (2015)

    Article  Google Scholar 

  • Castellanos-Gomez, A., Poot, M., Steele, G.A., van der Zant, H.S., Agrait, N., Rubio-Bollinger, G.: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012)

    Article  Google Scholar 

  • Chen, H., Filleter, T.: Effect of structure on the tribology of ultrathin graphene and graphene oxide films. Nanotechnology 26, 135702 (2015)

    Article  Google Scholar 

  • Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  • Compton, O., Dikin, D.A., Putz, K.W., Brinson, L.C., Nguyen, S.T.: Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv. Mater. 22, 892–896 (2010)

    Article  Google Scholar 

  • Compton, O.C., Cranford, S.W., Putz, K.W., An, Z., Brinson, L.C., Buehler, M.J., Nguyen, S.T.: Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano 6, 2008–2019 (2012)

    Article  Google Scholar 

  • Cooper, C.A., Young, R.J., Halsall, M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. Part A Appl. Sci. Manuf. 32, 401–411 (2001)

    Article  Google Scholar 

  • Dalton, A.B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., Baughman, R.H.: Super-tough carbon-nanotube fibres-these extraordinary composite fibres can be woven into electronic textiles. Nature 423, 703–706 (2003)

    Article  Google Scholar 

  • Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457 (2007)

    Article  Google Scholar 

  • Dong, X., Xing, G., Chan-Park, M.B., Shi, W., Xiao, N., Wang, J., Yan, Q., Sum, T.C., Huang, W., Chen, P.: The formation of a carbon nanotube-graphene oxide core-shell structure and its possible applications. Carbon 49, 5071–5078 (2011)

    Article  Google Scholar 

  • Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)

    Article  Google Scholar 

  • Ebenstein, D.M., Wahl, K.J.: A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298, 652–662 (2006)

    Article  Google Scholar 

  • Espinosa, H.D., Bernal, R.A., Filleter, T.: In-situ TEM electro-mechanical testing of nanowires and nanotubes. Small 8, 3233–3252 (2012a)

    Article  Google Scholar 

  • Espinosa, H.D., Filleter, T., Naraghi, M.: Multiscale experimental mechanics of hierarchical carbon-based materials. Adv. Mater. 24, 2805–2823 (2012b)

    Article  Google Scholar 

  • Ferrari, A.C., Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    Article  Google Scholar 

  • Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K., Bennewitz, R.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 086102 (2009)

    Article  Google Scholar 

  • Filleter, T., Bernal, R., Li, S., Espinosa, H.D.: Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 23, 2855–2860 (2011)

    Article  Google Scholar 

  • Filleter, T., Yockel, S., Naraghi, M., Paci, J.T., Compton, O.C., Mayes, M.L., Nguyen, S.T., Schatz, G.C., Espinosa, H.D.: Experimental-computational study of shear interactions within double-walled carbon nanotube bundles. Nano Lett. 12, 732–742 (2012)

    Article  Google Scholar 

  • Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2011)

    Book  Google Scholar 

  • Gao, Y., Liu, L.Q., Zu, S.Z., Peng, K., Zhou, D., Han, B.H., Zhang, Z.: The effect of interlayer adhesion on the mechanical behaviors of macroscopic GO papers. ACS Nano 5, 2134–2141 (2011)

    Article  Google Scholar 

  • Ginga, N.J., Sitaraman, S.K.: The experimental measurement of effective compressive modulus of carbon nanotube forests and the nature of deformation. Carbon 53, 237–244 (2013)

    Article  Google Scholar 

  • Gong, L., Young, R.J., Kinloch, I.A., Riaz, I., Jalil, R., Novoselov, K.S.: Optimizing the reinforcement of polymer-based nanocomposites by graphene. ACS Nano 6, 2086–2095 (2012)

    Article  Google Scholar 

  • Guillonneau, G., Kermouche, G., Bec, S., Loubet, J.-L.: Determination of mechanical properties by nanoindentation independently of indentation depth measurement. J. Mater. Res. 27, 2551–2560 (2012)

    Article  Google Scholar 

  • Haque, M.A., Saif, M.T.A.: In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp. Mech. 42, 123–128 (2002)

    Article  Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic, London, UK (1992)

    Google Scholar 

  • Jacobs, T.D.B., Ryan, K.E., Keating, P.L., Grierson, D.S., Lefever, J.A., Turner, K.T., Harrison, J.A., Carpick, R.W.: The effect of atomic-scale roughness on the adhesion of nanoscale asperities: a combined simulation and experimental investigation. Tribol. Lett. 50, 81–93 (2013)

    Article  Google Scholar 

  • Jacobs, T.D.B., Lefever, J.A., Carpick, R.W.: A technique for the experimental determination of the length and strength of adhesive interactions between effectively rigid materials. Tribol. Lett. 59, 1–11 (2015a)

    Article  Google Scholar 

  • Jacobs, T.D.B., Lefever, J.A., Carpick, R.W.: Measurement of the length and strength of adhesive interactions in a nanoscale silicon-diamond interface. Adv. Mater. Interfaces. 2, 1400547 (2015b)

    Google Scholar 

  • Jiang, T., Zhu, Y.: Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale 7, 10760–10766 (2015)

    Article  Google Scholar 

  • Kim, Y.D., Kim, H., Cho, Y., Ryoo, J.H., Park, C.H., Kim, P., Kim, Y.S., Lee, S., Li, Y., Park, S.N., Shim Yoo, Y., Yoon, D., Dorgan, V.E., Pop, E., Heinz, T.F., Hone, J., Chun, S.H., Cheong, H., Lee, S.W., Bae, M.H., Park, Y.D.: Bright visible light emission from graphene. Nat. Nanotechnol. 10, 676–681 (2015)

    Article  Google Scholar 

  • Kis, A., Csanyi, G., Salvetat, J.-P., Lee, T.-N., Couteau, E., Kulik, A.J., Benoit, W., Brugger, J., Forro, L.: Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3, 153–157 (2004)

    Article  Google Scholar 

  • Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett, M., Windle, A.: High-performance carbon nanotube fiber. Science 318, 1892–1895 (2007)

    Article  Google Scholar 

  • Kwon, C.H., Chun, K.Y., Kim, S.H., Lee, J.H., Kim, J.H., Lima, M.D., Baughman, R.H., Kim, S.J.: Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy. Nanoscale 7, 2489–2496 (2015)

    Article  Google Scholar 

  • Lee, C., Li, Q.Y., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010)

    Article  Google Scholar 

  • Lin, D.C., Dimitriadis, E.K., Horkay, F.: Robust strategies for automated AFM force curve analysis-II: adhesion-influenced indentation of soft, elastic materials. J. Biomech. Eng. 129, 904–912 (2007)

    Article  Google Scholar 

  • Liu, K., Yan, Q., Chen, M., Fan, W., Sun, Y., Suh, J., Fu, D., Lee, S., Zhou, J., Tongay, S., Ji, J., Neaton, J.B., Wu, J.: Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014)

    Article  Google Scholar 

  • Liu, Z.F., Fang, S., Moura, F.A., Ding, J.N., Jiang, N., Di, J., Zhang, M., Lepro, X., Galvao, D.S., Haines, C.S., Yuan, N.Y., Yin, S.G., Lee, D.W., Wang, R., Wang, H.Y., Lv, W., Dong, C., Zhang, R.C., Chen, M.J., Yin, Q., Chong, Y.T., Zhang, R., Wang, X., Lima, M.D., Ovalle-Robles, R., Qian, D., Lu, H., Baughman, R.H.: Hierarchically buckled sheath-core fibers for superelastic electronics sensors and muscles. Science 349, 400–404 (2015)

    Article  Google Scholar 

  • Lu, Y., Ganesan, Y., Lou, J.: A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device. Exp. Mech. 50, 47–54 (2010)

    Article  Google Scholar 

  • Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. Rev. Sect. Phy. Lett. 473, 51–87 (2009)

    Google Scholar 

  • Meng, F., Zhao, J., Ye, Y., Zhang, X., Li, S., Jia, J., Zhang, Z., Li, Q.: Multifunctionalization of carbon nanotube fibers with the aid of graphene wrapping. J. Mater. Chem. 22, 16277 (2012)

    Article  Google Scholar 

  • Merkle, A.P., Marks, L.D.: Friction in full view. Appl. Phys. Lett. 90, 064101 (2007)

    Article  Google Scholar 

  • Mirjalili, V., Ramachandramoorthy, R., Hubert, P.: Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes. Carbon 79, 413–423 (2014)

    Article  Google Scholar 

  • Mirzaeifar, R., Qin, Z., Buehler, M.J.: Mesoscale mechanics of twisting carbon nanotube yarns. Nanoscale 7, 5435–5445 (2015)

    Article  Google Scholar 

  • Motta, M., Li, Y.L., Kinloch, I., Windle, A.: Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 5, 1529–1533 (2005)

    Article  Google Scholar 

  • Naraghi, M., Filleter, T., Moravsky, A., Locascio, M., Loutfy, R.O., Espinosa, H.D.: A multiscale study of high performance double-walled nanotube—polymer fibers. ACS Nano 4, 6463–6476 (2010)

    Article  Google Scholar 

  • Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  • Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3, 626–631 (2008)

    Article  Google Scholar 

  • Persson, B.N.J., Tosatti, E.: The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys. 115, 5597–5610 (2001)

    Article  Google Scholar 

  • Qian, H., Greenhalgh, E.S., Shaffer, M.S.P., Bismarck, A.: Carbon nanotube-based hierarchical composites: a review. J. Mater. Chem. 20, 4751–4762 (2010)

    Article  Google Scholar 

  • Qiu, J., Terrones, J., Vilatela, J.J., Vickers, M.E., Elliott, J.A., Windle, A.H.: Liquid infiltration into CNT fibers_Effect on structure and electrical properties. ACS Nano 7, 8412–8422 (2013)

    Article  Google Scholar 

  • Rabinovich, Y.I., Adler, J.J., Ata, A., Singh, R.K., Moudgil, B.M.: Adhesion between nanoscale rough surfaces. J. Colloid Interface Sci. 232, 10–16 (2000)

    Article  Google Scholar 

  • Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., García de Abajo, F.J., Pruneri, V., Altug, H.: Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015)

    Article  Google Scholar 

  • Roenbeck, M.R., Furmanchuk, A., An, Z., Paci, J.T., Wei, X., Nguyen, S.T., Schatz, G.C., Espinosa, H.D.: Molecular-level engineering of adhesion in carbon nanomaterial interfaces. Nano Lett. 15, 4504–4516 (2015)

    Article  Google Scholar 

  • Sahoo, R.R., Biswas, S.K.: Microtribology and friction-induced material transfer in layered MoS2 nanoparticles sprayed on a steel surface. Tribol. Lett. 37, 313–326 (2009)

    Article  Google Scholar 

  • Samyn, P., Schoukens, G., De Baets, P.: Micro- to nanoscale surface morphology and friction response of tribological polyimide surfaces. Appl. Surf. Sci. 256, 3394–3408 (2010)

    Article  Google Scholar 

  • Santos, L.V., Trava-Airoldi, V.J., Iha, K., Corat, E.J., Salvadori, M.C.: Diamond-like-carbon and molybdenum disulfide nanotribology studies using atomic force measurements. Diamond Relat. Mater. 10, 1049–1052 (2001)

    Article  Google Scholar 

  • Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282 (2006)

    Article  Google Scholar 

  • Stano, K.L., Koziol, K., Pick, M., Motta, M.S., Moisala, A., Vilatela, J.J., Frasier, S., Windle, A.H.: Direct spinning of carbon nanotube fibres from liquid feedstock. Int. J. Mater. Form. 1, 4 (2008)

    Article  Google Scholar 

  • Stempflé, P., von Stebut, J.: Nano-mechanical behaviour of the 3rd body generated in dry friction—feedback effect of the 3rd body and influence of the surrounding environment on the tribology of graphite. Wear 260, 601–614 (2006)

    Article  Google Scholar 

  • Suk, J.W., Piner, R.D., An, J., Ruoff, R.S.: Mechanical properties of monolayer GO. ACS Nano 4, 6557–6564 (2010)

    Article  Google Scholar 

  • Tang, D.M., Kvashnin, D.G., Najmaei, S., Bando, Y., Kimoto, K., Koskinen, P., Ajayan, P.M., Yakobson, B.I., Sorokin, P.B., Lou, J., Golberg, D.: Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 5, 3631 (2014)

    Google Scholar 

  • Vilatela, J.J., Elliott, J.A., Windle, A.H.: A model for the strength of yarn-like carbon nanotube fibers. ACS Nano 5, 1921–1927 (2011)

    Article  Google Scholar 

  • Wang, Z., Liang, Z.Y., Wang, B., Zhang, C., Kramer, L.: Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos. Part A Appl. Sci. Manuf. 35, 1225–1232 (2004)

    Article  Google Scholar 

  • Wang, C., Frogley, M.D., Cinque, G., Liu, L.-Q., Barber, A.H.: Deformation and failure mechanisms in graphene oxide paper using in situ nanomechanical tensile testing. Carbon 63, 471–477 (2013)

    Article  Google Scholar 

  • Wang, X., Tian, H., Mohammad, M.A., Li, C., Wu, C., Yang, Y., Ren, T.L.: A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun. 6, 7767 (2015)

    Article  Google Scholar 

  • Wei, X., Kysar, J.W.: Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. Int. J. Solids Struct. 49, 3201–3209 (2012)

    Article  Google Scholar 

  • Yang, J.W., Hu, J.H., Wang, C.C., Qin, Y.J., Guo, Z.X.: Fabrication and characterization of soluble multi-walled carbon nanotubes reinforced P(MMA-co-EMA) composites. Macromol. Mater. Eng. 289, 828–832 (2004)

    Article  Google Scholar 

  • Zhang, M., Fang, S.L., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H.: Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005)

    Article  Google Scholar 

  • Zhang, P., Ma, L.L., Fan, F.F., Zeng, Z., Peng, C., Loya, P.E., Liu, Z., Gong, Y.J., Zhang, J.N., Zhang, X.X., Ajayan, P.M., Zhu, T., Lou, J.: Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014)

    Google Scholar 

  • Zou, Y.B., Feng, Y.C., Wang, L., Liu, X.B.: Processing and properties of MWNT/HDPE composites. Carbon 42, 271–277 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobin Filleter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colas, G., Filleter, T. (2016). Nanoscale Mechanical Characterization of 1D and 2D Materials with Application to Nanocomposites. In: Meguid, S. (eds) Advances in Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8_3

Download citation

Publish with us

Policies and ethics