Skip to main content

Piezoelectric Response at Nanoscale

  • Chapter
  • First Online:
Book cover Advances in Nanocomposites
  • 1031 Accesses

Abstract

Considerable efforts were invested to study the piezoelectricity at the nanoscale, which serves as a physical basis for a wide range of smart nanodevices and nanoelectronics. This chapter reviews the recent progress in characterizing the effective piezoelectric property in a nanoworld and the influence of the piezoelectric effect on the mechanical responses of nanoscale structures. Extremely strong piezoelectric responses of piezoelectric nanomaterials were reported in experiments, and the size dependence was observed in atomistic simulations. Attempts were also made to reveal the physics behind these unique features, but the universal theory has not yet been established. Among the proposed mechanisms, the theory of surface piezoelectricity is widely accepted and thus used to derive two effective piezoelectric coefficients (EPCs) for investigating the effect of piezoelectricity on (1) stress or strain and (2) the effective elastic moduli of piezoelectric nanomaterials. The EPCs are found to be size-dependent and also deformation-selective. The obtained results also show that at the nanoscale the surface piezoelectricity can enhance the piezoelectric potential of nanostructures when subjected to a static deformation. In addition, the intrinsic loss of oscillating piezoelectric nanostructures can be mitigated through the piezoelectric effect at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araneo, R., Lovat, G., Burghignoli, P., Falconi, C.: Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv. Mater. 24, 4719–4724 (2012)

    Article  Google Scholar 

  • Assadi, A., Farshi, B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108, 074312 (2010)

    Article  Google Scholar 

  • Assadi, A., Farshi, B., Alinia-Ziazi, A.: Size dependent dynamic analysis of nanoplates. J. Appl. Phys. 107, 124310 (2010)

    Article  Google Scholar 

  • Bdikin, I.K., Gracio, J., Ayouchi, R., Schwarz, R., Kholkin, A.L.: Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, 235703 (2010)

    Article  Google Scholar 

  • Bere, A., Serra, A.: On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries. Philos. Mag. 86, 2159–2192 (2006)

    Article  Google Scholar 

  • Bernardini, F., Fiorentini, V.: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024 (1997)

    Article  Google Scholar 

  • Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006)

    Article  Google Scholar 

  • Dai, S.X., Dunn, M.L., Park, H.S.: Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials. Nanotechnology 21, 445707 (2010)

    Article  Google Scholar 

  • Dai, S.X., Gharbi, M., Sharma, P., Park, H.S.: Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 110, 104305 (2011)

    Article  Google Scholar 

  • Dunn, S.: Strain behaviour of thin film PZT (30/70) examined through piezoforce microscopy (P-AFM). J. Appl. Phys. 94, 5964–5968 (2003)

    Article  Google Scholar 

  • Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992)

    Article  Google Scholar 

  • Espinosa, H.D., Bernal, R.A., Minary-Jolandan, M.: A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 24, 4656–4675 (2012)

    Article  Google Scholar 

  • Fan, H.J., Lee, W., Hauschild, R., Alexe, M., Le Rhun, G., Scholz, R., Dadgar, A., Nielsch, K., Kalt, H., Krost, A., Zacharias, M., Gosele, U.: Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications. Small 2, 561–568 (2006)

    Article  Google Scholar 

  • Fang, X.Q., Liu, J.X., Gupta, V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716–1726 (2013)

    Article  Google Scholar 

  • Faucher, M., Grimbert, B., Cordier, Y., Baron, N., Wilk, A., Lahreche, H., Bove, P., François, M., Tilmant, P., Gehin, T., Legrand, C., Werquin, M., Buchaillot, L., Gaquière, C., Théron, D.: Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod. Appl. Phys. Lett. 94, 233506 (2009)

    Article  Google Scholar 

  • Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007)

    Article  Google Scholar 

  • Gao, Y., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)

    Article  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  • Georgakaki, D., Ziogos, O.G., Polatoglou, H.M.: Vibrational and mechanical properties of Si/Ge nanowires as resonators: a molecular dynamics study. Phys. Status Solidi A 211, 267–276 (2014)

    Article  Google Scholar 

  • Han, W.Q., Redlich, P., Ernst, F., Ruhle, M.: Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere. Appl. Phys. Lett. 76, 652–654 (2000)

    Article  Google Scholar 

  • He, M.R., Shi, Y., Zhou, W., Chen, J.W., Yan, Y.J., Zhu, J.: Diameter dependence of modulus in zinc oxide nanowires and the effect of loading mode: in situ experiments and universal core-shell approach. Appl. Phys. Lett. 95, 091912 (2009)

    Article  Google Scholar 

  • Hoang, M.T., Yvonnet, J., Mitrushchenkov, A., Chambaud, G.: First-principles based multiscale model of piezoelectric nanowires with surface effects. J. Appl. Phys. 113, 014309 (2013)

    Article  Google Scholar 

  • Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi B 243, R22–R24 (2006)

    Article  Google Scholar 

  • Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)

    Article  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  • Imboden, M., Mohanty, P.: Dissipation in nanoelectromechanical systems. Phys. Rep. 534, 89–146 (2014)

    Article  Google Scholar 

  • Jiang, H., Yu, M.F., Liu, B., Huang, Y.: Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator. Phys. Rev. Lett. 93, 185501 (2004)

    Article  Google Scholar 

  • Kim, S.M., Kim, H., Nam, Y., Kim, S.: Effects of external surface charges on the enhanced piezoelectric potential of ZnO and AlN nanowires and nanotubes. AIP Adv. 2, 042174 (2012)

    Article  Google Scholar 

  • Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  Google Scholar 

  • Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York (2001)

    Google Scholar 

  • Li, C., Guo, W.L., Kong, Y., Gao, H.J.: Size-dependent piezoelectricity in zinc oxide nanofilms from first-principles calculations. Appl. Phys. Lett. 90, 033108 (2007)

    Article  Google Scholar 

  • Li, X.B., Maute, K., Dunn, M.L., Yang, R.G.: Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010)

    Article  Google Scholar 

  • Li, Y.H., Fang, B., Zhang, J.Z., Song, J.Z.: Surface effects on the wrinkling of piezoelectric films on compliant substrates. J. Appl. Phys. 110, 114303 (2011)

    Article  Google Scholar 

  • Liu, C., Rajapakse, R.K.N.D.: Surface energy incorporated continuum models for static and dynamic response of nanoscale beams. IEEE Trans. Nanotechnol. 9, 422–431 (2010)

    Article  Google Scholar 

  • Masmanidis, S.C., Karabalin, R.B., De Vlaminck, I., Borghs, G., Freeman, M.R., Roukes, M.L.: Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007)

    Article  Google Scholar 

  • Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  • Minary-Jolandan, M., Bernal, R.A., Kuljanishvili, I., Parpoil, V., Espinosa, H.D.: Individual GaN nanowires exhibit strong piezoelectricity in 3D. Nano Lett. 12, 970–976 (2012)

    Article  Google Scholar 

  • Momeni, K., Attariani, H.: Electromechanical properties of 1D ZnO nanostructures: nanopiezotronics building blocks, surface and size-scale effects. Phys. Chem. Chem. Phys. 16, 4522–4527 (2014)

    Article  Google Scholar 

  • Momeni, K., Odegard, G.M., Yassar, R.S.: Finite size effect on the piezoelectric properties of ZnO nanobelts: a molecular dynamics approach. Acta Mater. 60, 5117–5124 (2012)

    Article  Google Scholar 

  • Montague, J.R., Bertness, K.A., Sanford, N.A., Bright, V.M., Rogers, C.T.: Temperature-dependent mechanical-resonance frequencies and damping in ensembles of gallium nitride nanowires. Appl. Phys. Lett. 101, 173101 (2012)

    Article  Google Scholar 

  • Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  • Olsson, P.A.T.: Transverse resonant properties of strained gold nanowires. J. Appl. Phys. 108, 034318 (2010)

    Article  Google Scholar 

  • Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  • Romano, G., Mantini, G., Di Carlo, A., D’Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology 22, 465401 (2011)

    Article  Google Scholar 

  • Schwarz, R.B., Khachaturyan, K.: Elastic moduli of gallium nitride. Appl. Phys. Lett. 70, 1122–1124 (1997)

    Article  Google Scholar 

  • Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)

    Article  Google Scholar 

  • Smith, M.B., Page, K., Siegrist, T., Redmond, P.L., Walter, E.C., Seshadri, R., Brus, L.E., Steigerwald, M.L.: Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 130, 6955–6963 (2008)

    Article  Google Scholar 

  • Sohn, J.I., Cha, S.N., Song, B.G., Lee, S., Kim, S.M., Ku, J., Kim, H.J., Park, Y.J., Choi, B.L., Wang, Z.L., Kim, J.M., Kim, K.: Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energ. Environ. Sci. 6, 97–104 (2013)

    Article  Google Scholar 

  • Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985)

    Article  Google Scholar 

  • Wang, Z.L.: ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R 64, 33–71 (2009)

    Article  Google Scholar 

  • Wang, G.F., Feng, X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D Appl. Phys. 42, 155411 (2009)

    Article  Google Scholar 

  • Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhys. Lett. 91, 56007 (2010)

    Article  Google Scholar 

  • Wang, Z.G., Zu, X.T., Gao, F., Weber, W.J.: Atomistic simulation of brittle to ductile transition in GaN nanotubes. Appl. Phys. Lett. 89, 243123 (2006a)

    Article  Google Scholar 

  • Wang, X.B., Song, C., Li, D.M., Geng, K.W., Zen, F., Pan, F.: The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film. Appl. Surf. Sci. 253, 1639–1643 (2006b)

    Article  Google Scholar 

  • Wang, Z.G., Zu, X.T., Yang, L., Gao, F., Weber, W.J.: Atomistic simulations of the size, orientation, and temperature dependence of tensile behavior in GaN nanowires. Phys. Rev. B 76, 045310 (2007)

    Article  Google Scholar 

  • Wang, Z.G., Zu, X.T., Gao, F., Weber, W.J.: Mechanical behavior of gallium nitride nanotubes under combined tension-torsion: an atomistic simulation. J. Appl. Phys. 103, 013505 (2008)

    Article  Google Scholar 

  • Xiang, H.J., Yang, J.L., Hou, J.G., Zhu, Q.S.: Piezoelectricity in ZnO nanowires: a first-principles study. Appl. Phys. Lett. 89, 223111 (2006)

    Article  Google Scholar 

  • Xu, B., Pan, B.C.: The effect of atomic vacancies and grain boundaries on the mechanical proper. J. Appl. Phys. 99, 104314 (2006)

    Article  Google Scholar 

  • Xu, F., Qin, Q.Q., Mishra, A., Gu, Y., Zhu, Y.: Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 3, 271–280 (2010)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D Appl. Phys. 44, 075404 (2010)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011)

    Article  Google Scholar 

  • Yang, Y., Guo, W., Wang, X., Wang, Z., Qie, J., Zhang, Y.: Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett. 12, 1919–1922 (2012)

    Article  Google Scholar 

  • Yao, H.Y., Yun, G.H., Bai, N.: Influence of exponentially increasing surface elasticity on the piezoelectric potential of a bent ZnO nanowire. J. Phys. D Appl. Phys. 45, 285304 (2012)

    Article  Google Scholar 

  • Yu, R.M., Dong, L., Pan, C.F., Niu, S.M., Liu, H.F., Liu, W., Chua, S.J., Chi, D.Z., Wang, Z.L.: Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics. Adv. Mater. 24, 3532–3537 (2012)

    Article  Google Scholar 

  • Zhang, J.: Small-scale effect on the piezoelectric potential of gallium nitride nanowires. Appl. Phys. Lett. 104, 253110 (2014)

    Article  Google Scholar 

  • Zhang, J., Meguid, S.A.: On the piezoelectric potential of gallium nitride nanotubes. Nano Energ. 12, 322–330 (2015a)

    Article  Google Scholar 

  • Zhang, J., Meguid, S.A.: Piezoelectric effect on the intrinsic dissipation in oscillating gallium nitride nanobelts. Europhys. Lett. 112, 26003 (2015b)

    Article  Google Scholar 

  • Zhang, J., Wang, C.Y.: Vibrating piezoelectric nanofilms as sandwich nanoplates. J. Appl. Phys. 111, 094303 (2012)

    Article  Google Scholar 

  • Zhang, Y.H., Hong, J.W., Liu, B., Fang, D.N.: Molecular dynamics investigations on the size-dependent ferroelectric behavior of BaTiO3 nanowires. Nanotechnology 20, 405703 (2009)

    Article  Google Scholar 

  • Zhang, Y.H., Hong, J.W., Liu, B., Fang, D.N.: Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study. Nanotechnology 21, 015701 (2010)

    Article  Google Scholar 

  • Zhang, J., Wang, C.Y., Adhikari, S.: Surface effect on the buckling of piezoelectric nanofilms. J. Phys. D Appl. Phys. 45, 285301 (2012a)

    Article  Google Scholar 

  • Zhang, J., Wang, C.Y., Chowdhury, R., Adhikari, S.: Small-scale effect on the mechanical properties of metallic nanotubes. Appl. Phys. Lett. 101, 093109 (2012b)

    Article  Google Scholar 

  • Zhang, J., Wang, C.Y., Chowdhury, R., Adhikari, S.: Size-and temperature-dependent piezoelectric properties of gallium nitride nanowires. Scr. Mater. 68, 627–630 (2013)

    Article  Google Scholar 

  • Zhang, J., Wang, C.Y., Bowen, C.: Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 6, 13314–13327 (2014)

    Article  Google Scholar 

  • Zhao, M.H., Wang, Z.L., Mao, S.X.: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587–590 (2004)

    Article  Google Scholar 

  • Zhu, R., Wang, D.Q., Xiang, S.Q., Zhou, Z.Y., Ye, X.Y.: Piezoelectric characterization of a single zinc oxide nanowire using a nanoelectromechanical oscillator. Nanotechnology 19, 285712 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Discovery Accelerator Supplements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Meguid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, J., Meguid, S.A. (2016). Piezoelectric Response at Nanoscale. In: Meguid, S. (eds) Advances in Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8_2

Download citation

Publish with us

Policies and ethics