Skip to main content

Carbon Nanotube TFETs: Structure Optimization with Numerical Simulation

  • Chapter
  • First Online:
Tunneling Field Effect Transistor Technology
  • 1997 Accesses

Abstract

The unique band structure makes carbon nanotube (CNT) an ideal vehicle for tunnel FET (TFET) studying. In this chapter, the structure of CNT-TFET is optimized with numerical simulation. The band structure of CNT is acquired with p z orbital tight-binding model. Quantum mechanical simulation with the non-equilibrium Green’s function is adopted describing the carrier transport. TFET is compared with conventional MOSFET with CNT as the channel material. A steeper than 60 mv/dec inverse subthreshold slope is obtained at the cost of a smaller on current and the ambipolar conduction behavior. The current modulation mechanism of TFET is discussed concerning both the occupancy probability and tunnel probability. The occupancy probability can be modulated with band alignment, and the tunnel probability can be modulated with the electric field or tunnel path. Several optimized TFET structures including doping engineering, dielectric engineering, and gate work function engineering are demonstrated for improved performances with increased on current and/or reduced ambipolar conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific Publishing Company, 1998)

    Google Scholar 

  2. L. Radushkevich, V. Lukyanovich, On the structure of carbon formed by the thermal decomposition of carbon monoxide (CO) to the contact with iron. Russ. J. Phys. Chem. 26, 88 (1952)

    Google Scholar 

  3. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  4. A. Javey, J. Kong, Carbon Nanotube Electronics (Springer, Berlin, 2009)

    Google Scholar 

  5. H.S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  6. J. Knoch, S. Mantl, J. Appenzeller, Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51, 572–578 (2007)

    Article  Google Scholar 

  7. J. Appenzeller, L. Yu-Ming, J. Knoch, C. Zhihong, P. Avouris, Comparing carbon nanotube transistors—The ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005)

    Article  Google Scholar 

  8. J. Appenzeller, J. Knoch, M.T. Bjork, H. Riel, H. Schmid, W. Riess, Toward nanowire electronics. IEEE Trans. Electron Devices 55, 2827–2845 (2008)

    Article  Google Scholar 

  9. P.A. Patel, Steep turn on/off ‘Green’ tunnel transistors. Ph.D. thesis, EECS Department, University of California, Berkeley (2010)

    Google Scholar 

  10. D.E. Nikonov, I.A. Young, Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013)

    Article  Google Scholar 

  11. J. Appenzeller, Y.M. Lin, J. Knoch, P. Avouris, Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004)

    Article  Google Scholar 

  12. L. Zhang, X. Lin, J. He, M. Chan, An analytical charge model for double-gate tunnel FETs. IEEE Trans. Electron Devices 59, 3217–3223 (2012)

    Article  Google Scholar 

  13. Y. Taur, J. Wu, J. Min, An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices 62, 1399–1404 (2015)

    Article  Google Scholar 

  14. E.-H. Toh, G. H. Wang, L. Chan, G. Samudra, Y.-C. Yeo, Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction. Appl. Phys. Lett. 91, 243505-3 (2007)

    Google Scholar 

  15. O.M. Nayfeh, C.N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Device Lett. 29, 1074–1077 (2008)

    Article  Google Scholar 

  16. K. Ganapathi, S. Salahuddin, Heterojunction vertical band-to-band tunneling transistors for steep subthreshold swing and high on current. IEEE Electron Device Lett. 32, 689–691 (2011)

    Article  Google Scholar 

  17. M. Liu, Y. Liu, H. Wang, Q. Zhang, C. Zhang, S. Hu et al., Design of GeSn-based heterojunction-enhanced N-Channel tunneling FET With improved subthreshold swing and ON-State current. IEEE Trans. Electron Devices 62, 1262–1268 (2015)

    Article  Google Scholar 

  18. D.B. Abdi, M.J. Kumar, In-built N+ pocket p-n-p-n tunnel field-effect transistor. IEEE Electron Device Lett. 35, 1170–1172 (2014)

    Article  Google Scholar 

  19. R. Jhaveri, V. Nagavarapu, J.C.S. Woo, Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 80–86 (2011)

    Article  Google Scholar 

  20. V. Nagavarapu, R. Jhaveri, J.C.S. Woo, The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 55, 1013–1019 (2008)

    Article  Google Scholar 

  21. S. Datta, Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)

    Article  Google Scholar 

  22. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  23. S.O. Koswatta, N. Neophytou, D. Kienle, G. Fiori, M.S. Lundstrom, Dependence of DC characteristics of CNT MOSFETs on bandstructure models. IEEE Trans. Nanotechnol. 5, 368–372 (2006)

    Article  Google Scholar 

  24. S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56, 456–465 (2009)

    Article  Google Scholar 

  25. S. Bruzzone, G. Iannaccone, N. Marzari, G. Fiori, An open-source multiscale framework for the simulation of nanoscale devices. IEEE Trans. Electron Devices 61, 48–53 (2014)

    Article  Google Scholar 

  26. D. Vasileska, S.M. Goodnick, Computational Electronics (Morgan & Claypool Publishers, 2006)

    Google Scholar 

  27. Z. Ren, Nanoscale MOSFETs: physics, simulation and design. Ph.D. thesis, Purdue University (2006)

    Google Scholar 

  28. R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845–7869 (1997)

    Article  Google Scholar 

  29. M.P. Anantram, M.S. Lundstrom, D.E. Nikonov, Modeling of nanoscale devices. Proc. IEEE 96, 1511–1550 (2008)

    Article  Google Scholar 

  30. R. Venugopal, Z. Ren, S. Datta, M.S. Lundstrom, D. Jovanovic, Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92, 3730–3739 (2002)

    Article  Google Scholar 

  31. M. Luisier, A. Schenk, W. Fichtner, Quantum transport in two- and three-dimensional nanoscale transistors: Coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100, 12 (2006)

    Article  Google Scholar 

  32. H. Wang, G. Wang, S. Chang, Q. Huang, High-order element effects of the Green’s function in quantum transport simulation of nanoscale devices. IEEE Trans. Electron Devices 56, 3106–3114 (2009)

    Article  Google Scholar 

  33. D. Mamaluy, M. Sabathil, P. Vogl, Efficient method for the calculation of ballistic quantum transport. J. Appl. Phys. 93, 4628–4633 (2003)

    Article  Google Scholar 

  34. A. Trellakis, A.T. Galick, A. Pacelli, U. Ravaioli, Iteration scheme for the solution of the two-dimensional Schrodinger-Poisson equations in quantum structures. J. Appl. Phys. 81, 7880–7884 (1997)

    Article  Google Scholar 

  35. G. Fiori, G. Iannaccone, G. Klimeck, A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry. IEEE Trans. Electron Devices 53, 1782–1788 (2006)

    Article  Google Scholar 

  36. H. Wang, G. Wang, S. Chang, Q. Huang, Accelerated solution of Poisson-Schrodinger equations in nanoscale devices by Anderson mixing scheme. IET Micro Nano Letters 4, 122–127 (2009)

    Article  Google Scholar 

  37. Z. Ren, S. Goasguen, A. Matsudaira, S.S. Ahmed, K. Cantley, Y. Liu, Y. Gao, X. Wang, M. Lundstrom, NanoMOS (2014). http://nanohub.org/resources/nanomos. doi:10.4231/D3GQ6R32D

  38. S. Koswatta, J. Guo, D. Nikonov, MOSCNT: code for carbon nanotube transistor simulation. http://nanohub.org/resources/1989

  39. G. Fiori, G. Iannaccone, NanoTCAD ViDES. http://vides.nanotcad.com/vides/

  40. G. Fiori, G. Iannaccone, Three-dimensional simulation of one-dimensional transport in silicon nanowire transistors. IEEE Trans. Nanotechnol. 6, 524–529 (2007)

    Article  Google Scholar 

  41. G. Fiori, G. Iannaccone, NanoTCAD ViDES. https://nanohub.org/resources/vides. doi 10.4231/D3P26Q456

  42. J. Guo, S. Datta, M. Lundstrom, A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron Devices 51, 172–177 (2004)

    Article  Google Scholar 

  43. I. Hassaninia, M.H. Sheikhi, Z. Kordrostami, Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electron. 52, 980–985 (2008)

    Google Scholar 

  44. H. Zhou, M. Zhang, Y. Hao, Performance Optimization of MOS-Like carbon nanotube FETs with realistic contacts. IEEE Trans. Electron Devices 57, 3153–3162 (2010)

    Article  Google Scholar 

  45. L. De Michielis, L. Lattanzio, K.E. Moselund, H. Riel, A.M. Ionescu, Tunneling and occupancy probabilities: how do they affect tunnel-FET behavior? IEEE Electron Device Lett. 34, 726–728 (2013)

    Article  Google Scholar 

  46. L. De Michielis, L. Lattanzio, A.M. Ionescu, Understanding the superlinear onset of tunnel-FET output characteristic. IEEE Electron Device Lett. 33, 1523–1525 (2012)

    Article  Google Scholar 

  47. M.A. Khayer, R.K. Lake, Drive currents and leakage currents in InSb and InAs nanowire and carbon nanotube band-to-band tunneling FETs. IEEE Electron Device Lett. 30, 1257–1259 (2009)

    Article  Google Scholar 

  48. A.S. Verhulst, W.G. Vandenberghe, K. Maex, S. De Gendt, M.M. Heyns, G. Groeseneken, Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29, 1398–1401 (2008)

    Article  Google Scholar 

  49. C. Wei, C.J. Yao, G.F. Jiao, H. Darning, H.Y. Yu, L. Ming-Fu, Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Trans. Electron Devices 58, 2122–2126 (2011)

    Article  Google Scholar 

  50. A.S. Verhulst, W.G. Vandenberghe, K. Maex, G. Groeseneken, Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102–053103 (2007)

    Article  Google Scholar 

  51. D.B. Abdi, M.J. Kumar, Controlling Ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 1–1 (2014)

    Google Scholar 

  52. C. Anghel, P. Chilagani, A. Amara, A. Vladimirescu, Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96 (2010)

    Google Scholar 

  53. M. Schlosser, K.K. Bhuwalka, M. Sauter, T. Zilbauer, T. Sulima, I. Eisele, Fringing-induced drain current improvement in the tunnel field-effect transistor with high-k gate dielectrics. IEEE Trans. Electron Devices 56, 100–108 (2009)

    Article  Google Scholar 

  54. C. Woo Young, L. Woojun, Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57, 2317–2319 (2010)

    Google Scholar 

  55. H. Wang, S. Chang, Y. Hu, H. He, J. He, Q. Huang, F. He, G. Wang, A novel barrier controlled tunnel FET. IEEE Electron Device Lett. 35, 798–800 (2014)

    Article  Google Scholar 

  56. S.J. Wind, J. Appenzeller, P. Avouris, Lateral scaling in carbon-nanotube field-effect transistors. Phys. Rev. Lett. 91, 058301 (2003)

    Google Scholar 

  57. S. Saurabh, M.J. Kumar, Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 404–410 (2011)

    Article  Google Scholar 

  58. H. Wang, S. Chang, J. He, Q. Huang, A Novel PNIN Barrier controlled tunnel FET. Adv. Mater. Res. 1096, 497–502 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, H. (2016). Carbon Nanotube TFETs: Structure Optimization with Numerical Simulation. In: Zhang, L., Chan, M. (eds) Tunneling Field Effect Transistor Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-31653-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31653-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31651-2

  • Online ISBN: 978-3-319-31653-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics