Skip to main content

Compact Models of TFETs

  • Chapter
  • First Online:
  • 1974 Accesses

Abstract

Rapid developments in the TFETs’ process and rising interests in evaluating their potential in low-power circuits/systems require a TFET compact model for SPICE simulations. In this chapter, we discuss the essential device physics of TFETs, propose necessary simplifications of their complex operations, and develop a core model for homojunction TFETs. At first, we analyze the roles of TFET channel charge in affecting their subthreshold swing and superlinear output. Bearing this in mind, we divide the TFET structure into three distinctive regions for the purposes of considering the channel charge and at the same time getting a closed-form solution of the device electrostatics. After that, we find a simplification to the integration formulation of the interband tunneling physics to derive the current model. With a straightforward derivation, we obtain the terminal charge model and therefore finish the core model development. Around this core, we are adding advanced effect modules and specifically introduce the gate leakage module and short-channel effect module here. Finally, we analyze the basic operations of heterojunction TFETs and possible challenges in their model developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Dewey, B.C. Kung, J. Boardman, J.M. Fastenau, J. Kavalieros, R. Kotlyar, W.K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. Then, R. Chau, Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors for steep sub-threshold swing. IEDM Tech. Dig. 785–788 (2011)

    Google Scholar 

  2. H. Riel, K. Moselund, C. Bessire, M.T. Bjork, A. Schenk, H. Ghoneim, H. Schmid, InAs/Si heterojunc-tion nanowire tunnel diodes and tunnel FETs. IEDM Tech. Dig. 391–394 (2012)

    Google Scholar 

  3. M. Goto, Y. Kondo, Y. Morita, S. Migita, A. Hokazono, H. Ota, M. Masahara, S. Kawanaka, The guideline of Si/SiGe heterojunction design in parallel plate style TFETs for Si CMOS platform implementation. SSDM Tech. Dig. 852–853 (2014)

    Google Scholar 

  4. U.E. Avci, S. Hasan, D.E. Nikonov, R. Rios, K. Kuhn, I.A. Young, Understanding the feasibility of scaled III-V TFET for logic by bringing atomistic simulations and experimental results. VLSI Tech. Dig. 183–184 (2012)

    Google Scholar 

  5. U.E. Avci, I.A. Young, Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9 nm gate length. IEDM Tech. Dig. 96–99 (2013)

    Google Scholar 

  6. http://steeper-project.org/index.php. Accessed June 2015

  7. http://www.e2switch.org/index.php. Accessed June 2015

  8. https://www.fbo.gov/index?s=opportunity&mode=form&id=bf6fe92c53588c57892b5a787cf66146&tab=core&tabmode=list&=. Accessed June 2015

  9. Y. Tsividis, Operation and Modeling of the MOS transistor. (Oxford University Press, New York)

    Google Scholar 

  10. D. Kim, Y. Lee, J. Cai, I. Lauer, L. Chang, S.J. Koster, D. Sylvester, D. Blaauw, Low power circuit design based on heterojunction tunneling transistors (HETTs). Proc. ISLPED 219–224 (2009)

    Google Scholar 

  11. Y. Hong, Y. Yang, L. Yang, G. Samudra, C.H. Heng, Y.C. Yeo, SPICE behavioral model of the tunneling field-effect transistor for circuit simulation. IEEE Trans. Circuits Syst. II Express Briefs 56(12), 946–950 (2009)

    Article  Google Scholar 

  12. V. Saripalli, A.K. Mishra, S. Datta, V. Narayanan, An energy efficient heterogeneous CMP based on hybrid TFET-CMOS cores. Proc DAC 729–734 (2011)

    Google Scholar 

  13. W.G. Vandenberghe, A.S. Verhulst, G. Groeseneken, B. Soree, W. Magnus, Analytical model for point and line tunneling in a tunnel field-effect-transistor. Proc. SISPAD 137–140 (2008)

    Google Scholar 

  14. A.S. Verhulst, B. Soree, D. Leonelli, W.G. Vandenberghe, G. Groeseneken, Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect-transistor. J. Appl. Phys. 107(2), 024518 (2010)

    Article  Google Scholar 

  15. A.S. Verhulst, D. Leonelli, R. Rooyachers, G. Groeseneken, Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110(2), 024510 (2011)

    Article  Google Scholar 

  16. M.G. Bardon, H.P. Neves, R. Puers, C.V. Hoof, Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron. Devices 57(4), 827–834 (2010)

    Article  Google Scholar 

  17. M.J. Lee, W.Y. Choi, Analytical model of single-gate silicon-on-insulator tunneling field-effect transistors. Solid State Elec. 30(1), 110–114 (2011)

    Article  Google Scholar 

  18. J. Wan, C.L. Royer, A. Zaslavsky, S. Cristoloveanu, A tunneling field effect transistor model combining interband tunneling and channel transport. J. Appl. Phys. 110(10), 104503 (2011)

    Article  Google Scholar 

  19. Y. Yang, X. Tong, L. Yang, P. Guo, L. Fan, Y. Yeo, Tunneling Field-effect transistor: capacitance components and modeling. IEEE Electron. Devices Lett. 31(7), 752–754 (2010)

    Article  Google Scholar 

  20. P.M. Solomon, D.J. Frank, S.O. Koswatta, Compact model and performance estimation for tunneling nanowire FET. Proc. DRC 197–198 (2011)

    Google Scholar 

  21. A.S. Verhulst, W.G. Vandenberghe, K. Maex, G. Groeseneken, Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102 (2007)

    Article  Google Scholar 

  22. A. Ortiz-Conde, F. Sánchez, J. Muci, A. Barrios, J.J. Liou, C. Ho, Revisiting MOSFET threshold voltage extraction methods. Micro. Relia. 53(1), 90–104 (2013)

    Article  Google Scholar 

  23. D. Mohata, B. Rajamohanan, T. Mayer, M. Hudait, J. Fastenau, D. Lubyshey, A. Liu, S. Datta, Barrier-engineered arsenide-antimonide heterojunction tunnel FETs with enhanced drive current. IEEE Electron. Device Lett. 33(11), 1568–1570 (2012)

    Article  Google Scholar 

  24. K. Moselund, M.T. Björk, H. Schmid, H. Ghoneim, S. Karg, E. Lörtscher, W. Riess, H. Riel, Silicon nanowire tunnel FETs: low temperature operation and influence of high-k gate dielectric. IEEE Trans. Electron. Devices 58(9), 2911–2916 (2011)

    Article  Google Scholar 

  25. J. Nah, E. Liu, K. Varahramyan, D. Dillen, S. McCoy, J. Chan, E. Tutuc, Enhanced-performance germanium nanowire tunneling field-effect transistors using flash-assisted rapid thermal process. IEEE Electron. Device Lett. 31(12), 1359–1361 (2010)

    Article  Google Scholar 

  26. S. Richter, C. Sandow, A. Nichau, S. Trellenkamp, M. Schmidt, R. Luptak, K. Bourdelle, Q. Zhao, S. Mantl, Omega-gated silicon and strained silicon nanowire array tunneling FETs. IEEE Electron. Device Lett. 33(11), 1535–1537 (2012)

    Article  Google Scholar 

  27. P.M. Solomon, J. Jopling, D.J. Frank, C. D’Emic, O. Dokumaci, P. Ronsheim, W. Haensch, Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95(10), 5800–5812 (2004)

    Article  Google Scholar 

  28. L. Zhang, M. Chan, SPICE modeling of double-gate tunnel FETs including channel transports. IEEE Trans. Electron. Devices 61(2), 300–307 (2014)

    Article  Google Scholar 

  29. S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, On enhanced Miller capacitance effect in interband tunnel transistor. IEEE Electron. Devices Lett. 30(10), 1102–1104 (2009)

    Article  Google Scholar 

  30. L. Zhang, X. Lin, J. He, M. Chan, An analytical charge model for double-gate tunneling FETs. IEEE Trans. Electron. Devices 59(12), 3217–3223 (2012)

    Article  Google Scholar 

  31. K.K. Young, Short-channel effect in fully depleted SOI MOSFET’s. IEEE Trans. Electron. Devices 36(2), 399–402 (1989)

    Article  Google Scholar 

  32. L. Zhang, S. Wang, C. Ma, J. He, C. Xu, Y. Ma, Y. Ye, H. Liang, Q. Chen, M. Chan, Gate underlap design for short channel effects control in cylindrical gate-all around MOSFETs based on an analytical model. IETE Tech. Rev. 29(1), 29–35 (2012)

    Article  Google Scholar 

  33. S. Lin, J. Kuo, Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron. Devices 50(12), 2559–2564 (2003)

    Article  Google Scholar 

  34. E. Arnold, Charge-sheet model for silicon carbide inversion layers. IEEE Trans. Electron. Devices 46(3), 497–503 (1999)

    Article  Google Scholar 

  35. X. Aymerich-Humet, F. Serra-Mestres, J. Millan, A generalized approximation of the Fermi-Dirac integrals. J. Appl. Phys. 54(5), 2850–2851 (1983)

    Article  Google Scholar 

  36. R. Yan, A. Ourmazd, K.F. Lee, Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron. Devices 39(7), 1704–1710 (1992)

    Article  Google Scholar 

  37. M. Chan, T. Y. Man, J. he, X. Xi, C. Lin, X. Lin, P. K. Ko, A. M. Niknejad, C. Hu, Quasi-2D compact modeling for double-gate MOSFET. WCM Tech. Dig. 108–113 (2004)

    Google Scholar 

  38. S. Agrawal, J.G. Fossum, A physical model for fringe capacitance in double-gate MOSFETs with non-abrupt source/drain junctions and gate underlap. IEEE Trans. Electron. Devices 57(5), 1069–1075 (2010)

    Article  Google Scholar 

  39. S.E. Laux, Techniques for small signal analysis of semiconductor devices. IEEE Trans. Electron. Device 32(10), 2028–2037 (1985)

    Article  Google Scholar 

  40. http://i-mos.org. Accessed June 2015

  41. P. Wu, J. Zhang, L. Zhang, Z. Yu, Channel potential based compact model of double-gate tunneling FETs considering channel length scaling. SISPAD Tech. Dig. (2015)

    Google Scholar 

  42. Y. Taur, J. Wu, J. Min, An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron. Devices 62(5), 1399–1404 (2015)

    Article  Google Scholar 

  43. A. Schenk, Rhyner, R, M. Luisier, C. Bessire, Analysis of Si, InAs and Si-InAs tunnel diodes and tunnel FETs using different transport models. SISPAD Tech. Dig. 263–266 (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the General Research Fund from the Research Grant Council of Hong Kong under project number 611012. We would also like to thank Prof. Zhiping Yu and Mr. Peng Wu of Tsinghua University for the discussions on short-channel effects in TFETs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lining Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, L., Chan, M. (2016). Compact Models of TFETs. In: Zhang, L., Chan, M. (eds) Tunneling Field Effect Transistor Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-31653-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31653-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31651-2

  • Online ISBN: 978-3-319-31653-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics