Skip to main content

Tunneling FET Fabrication and Characterization

  • Chapter
  • First Online:
Tunneling Field Effect Transistor Technology

Abstract

Since the early demonstration of the conventional p + −i − n + Tunneling FETs (TFETs), various tunneling junction designs as well as the introduction of new material systems enabled the performance of TFETs to improve by orders of magnitude. Different properties and considerations of the material systems require well designed processes and novel processes rarely seen in the CMOS technology also emerged. The technology of TFET fabrication has been evolving dramatically ever since. This chapter introduces a number of techniques in the previous studies on the fabrication technology for the TFETs. In addition, some characterization methods on the fabricated devices are also discussed for more efficient diagnosis and optimization on the TFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Appenzeller, Y.-M. Lin, J. Knoch, P. Avouris, Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.93.196805

    Google Scholar 

  2. A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010). doi:10.1109/JPROC.2010.2070470

    Article  Google Scholar 

  3. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011). doi:10.1038/nature10679

    Article  Google Scholar 

  4. H. Lu, A. Seabaugh, Tunnel Field-effect transistors: state-of-the-art. Electron Devices Soc. IEEE J. 2, 44–49 (2014). doi:10.1109/JEDS.2014.2326622

    Article  Google Scholar 

  5. C. Hu, P. Patel, A. Bowonder, et al, Prospect of tunneling green transistor for 0.1 V CMOS, in: 2010 IEEE International Electron, Devices Meeting (IEDM), pp. 16.1.1–16.1.4 (2010)

    Google Scholar 

  6. G. Dewey, B. Chu-Kung, J. Boardman, et al, Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing, in 2011 IEEE International, Electron Devices Meeting (IEDM), pp 33.6.1–33.6.4 (2011)

    Google Scholar 

  7. K. Tomioka, M. Yoshimura, T. Fukui, Steep-slope tunnel field-effect transistors using III-V nanowire/Si heterojunction, in 2012 Symposium on VLSI Technology (VLSIT), pp. 47–48 (2012)

    Google Scholar 

  8. Q. Huang, R. Huang, Z. Zhan, et al, A novel Si tunnel FET with 36 mV/dec subthreshold slope based on junction depleted-modulation through striped gate configuration, in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 8.5.1–8.5.4 (2012)

    Google Scholar 

  9. A. Villalon, C. Le Royer, M. Casse, et al, Strained tunnel FETs with record ION: first demonstration of ETSOI TFETs with SiGe channel and RSD, in 2012 Symposium on VLSI Technology (VLSIT), pp 49–50 (2012)

    Google Scholar 

  10. RBijesh R, Liu H, Madan H, et al, Demonstration of In0.9Ga0.1As/GaAs0.18Sb0.82 near broken-gap tunnel FET with ION = 740 μA/μm, GM = 70μS/μm and Gigahertz switching performance at VDS = 0.5 V, in 2013 IEEE International, Electron Devices Meeting (IEDM), pp 28.2.1–28.2.4 (2013)

    Google Scholar 

  11. G. Zhou, R. Li, T. Vasen, et al, Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180 μA/μm at VDS = 0.5 V, in 2012 IEEE International, Electron Devices Meeting (IEDM), pp. 32.6.1–32.6.4 (2012)

    Google Scholar 

  12. M. Noguchi, S. Kim, M. Yokoyama, et al, High Ion/Ioff and low subthreshold slope planar-type InGaAs tunnel FETs with Zn-diffused source junctions, in 2013 IEEE International, Electron Devices Meeting (IEDM), pp. 28.1.1–28.1.4 (2013)

    Google Scholar 

  13. T. Yu, J.T. Teherani, D.A. Antoniadis, J.L. Hoyt, Quantum-well Tunnel-FETs with tunable backward diode characteristics. IEEE Electron Device Lett. 34, 1503–1505 (2013). doi:10.1109/LED.2013.2287237

    Article  Google Scholar 

  14. M. Kim, Y. Wakabayashi, R. Nakane, et al, High Ion/Ioff Ge-source ultrathin body strained-SOI tunnel FETs. In: 2014 IEEE International, Electron Devices Meeting (IEDM), pp. 13.2.1–13.2.4 (2014)

    Google Scholar 

  15. X. Zhao, A. Vardi, J.A. del Alamo, InGaAs/InAs heterojunction vertical nanowire tunnel fets fabricated by a top-down approach, in 2014 IEEE International, Electron Devices Meeting (IEDM), pp. 25.5.1–25.5.4 (2014)

    Google Scholar 

  16. B. Rajamohanan, R. Pandey, V. Chobpattana et al., 0.5 V supply voltage operation of In0.65Ga0.35As/GaAs0.4Sb0.6 tunnel FET. IEEE Electron Device Lett. 36, 20–22 (2015). doi:10.1109/LED.2014.2368147

    Article  Google Scholar 

  17. L. Zhang, M. Chan, SPICE modeling of double-gate tunnel-FETs including channel transports. IEEE Trans. Electron Devices 61, 300–307 (2014). doi:10.1109/TED.2013.2295237

    Article  Google Scholar 

  18. J.D. Plummer, M. Deal, P.D. Griffin, Silicon VLSI technology: fundamentals, practice, and modeling, 1st edn. (Prentice Hall, Upper Saddle River, NJ, 2000)

    Google Scholar 

  19. F. Mayer, C. Le Royer, J.F. Damlencourt, et al, Impact of SOI, Si1−xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance, in Electron Devices Meeting, 2008, IEDM 2008, IEEE International, pp. 1–5 (2008)

    Google Scholar 

  20. S.H. Kim, H. Kam, C. Hu, T.-J.K. Liu, Germanium-source tunnel field effect transistors with record high ION/IOFF, in 2009 Symposium on VLSI Technology, pp. 178–179 (2009)

    Google Scholar 

  21. T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat, Double-gate strained-ge heterostructure tunneling FET (TFET) with record high drive currents and ≪60 mV/dec subthreshold slope, in Electron Devices Meeting, IEDM 2008, IEEE International, pp. 1–3 (2008)

    Google Scholar 

  22. Y. Yang, S. Su, P. Guo, et al, Towards direct band-to-band tunneling in P-channel tunneling field effect transistor (TFET): technology enablement by Germanium-tin (GeSn), in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 16.3.1–16.3.4 (2012)

    Google Scholar 

  23. Q. Huang, R. Huang, C. Wu, et al, Comprehensive performance re-assessment of TFETs with a novel design by gate and source engineering from device/circuit perspective, in Electron Devices Meeting (IEDM), 2014 IEEE International, pp. 13.3.1–13.3.4 (2014)

    Google Scholar 

  24. Y.-R. Jhan, Y.-C. Wu, Y.-L. Wang et al., Low-temperature microwave annealing for tunnel field-effect transistor. IEEE Electron Device Lett. 36, 105–107 (2015). doi:10.1109/LED.2014.2386213

    Article  Google Scholar 

  25. L. Lattanzio, L. De Michielis, A.M. Ionescu, Complementary Germanium electron-hole bilayer tunnel FET for sub-0.5-V operation. IEEE Electron Device Lett. 33, 167–169 (2012). doi:10.1109/LED.2011.2175898

    Article  Google Scholar 

  26. J.T. Teherani, S. Agarwal, E. Yablonovitch et al., Impact of quantization energy and gate leakage in bilayer tunneling transistors. IEEE Electron Device Lett. 34, 298–300 (2013). doi:10.1109/LED.2012.2229458

    Article  Google Scholar 

  27. S. Agarwal, J.T. Teherani, J.L. Hoyt et al., Engineering the electron-hole bilayer tunneling field-effect transistor. IEEE Trans. Electron Devices 61, 1599–1606 (2014). doi:10.1109/TED.2014.2312939

    Article  Google Scholar 

  28. L. Czornomaz, N. Daix, D. Caimi, et al, An integration path for gate-first UTB III-V-on-insulator MOSFETs with silicon, using direct wafer bonding and donor wafer recycling, in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 23.4.1–23.4.4 (2012)

    Google Scholar 

  29. J. Lin, X. Zhao, D.A. Antoniadis, J.A. del Alamo, A novel digital etch technique for deeply scaled III-V MOSFETs. IEEE Electron Device Lett. 35, 440–442 (2014). doi:10.1109/LED.2014.2305668

    Article  Google Scholar 

  30. S. Agarwal, E. Yablonovitch, Using dimensionality to achieve a sharp tunneling FET (TFET) turn-on, in Device Research Conference (DRC), 2011 69th Annual, IEEE, pp. 199–200 (2011)

    Google Scholar 

  31. J.T. Teherani, W. Chern, D.A. Antoniadis et al., Extraction of large valence-band energy offsets and comparison to theoretical values for strained-Si/strained-Ge type-II heterostructures on relaxed SiGe substrates. Phys. Rev. B 85, 205308 (2012). doi:10.1103/PhysRevB.85.205308

    Article  Google Scholar 

  32. R. Rooyackers, A. Vandooren, A.S. Verhulst, et al, A new complementary hetero-junction vertical tunnel-FET integration scheme, in Electron Devices Meeting (IEDM), 2013 IEEE International, pp 4.2.1–4.2.4 (2013)

    Google Scholar 

  33. S. Mookerjea, D. Mohata, T. Mayer et al., Temperature-dependent I-V characteristics of a vertical tunnel FET. IEEE Electron Device Lett. 31, 564–566 (2010). doi:10.1109/LED.2010.2045631

    Article  Google Scholar 

  34. T. Yu, J.T. Teherani, D.A. Antoniadis, J.L. Hoyt, Effects of substrate leakage and drain-side thermal barriers in In0.53Ga0.47As/GaAs0.5Sb0.5 quantum-well tunneling field-effect transistors. Appl. Phys. Express 7, 094201 (2014). doi:10.7567/APEX.7.094201

    Google Scholar 

  35. W.K. Liu, D. Lubyshev, J.M. Fastenau et al., Monolithic integration of InP-based transistors on Si substrates using MBE. J. Cryst. Growth 311, 1979–1983 (2009). doi:10.1016/j.jcrysgro.2008.10.061

    Article  Google Scholar 

  36. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). doi:10.1063/1.1368156

    Article  Google Scholar 

  37. J.Z. Li, J. Bai, J.-S. Park et al., Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping. Appl. Phys. Lett. 91, 021114 (2007). doi:10.1063/1.2756165

    Article  Google Scholar 

  38. J.G. Fiorenza, J.-S. Park, J. Hydrick et al., (Invited) Aspect ratio trapping: a unique technology for integrating ge and III-Vs with silicon CMOS. ECS Trans. 33, 963–976 (2010). doi:10.1149/1.3487628

    Article  Google Scholar 

  39. H.C. Tseng, Y.Z. Ye, High-performance, graded-base AlGaAs/InGaAs collector-up heterojunction bipolar transistors using a novel selective area regrowth process. IEEE Electron Device Lett. 20, 271–273 (1999). doi:10.1109/55.767095

    Article  Google Scholar 

  40. D.K. Mohata, R. Bijesh, Y. Zhu, et al, Demonstration of improved heteroepitaxy, scaled gate stack and reduced interface states enabling heterojunction tunnel FETs with high drive current and high on-off ratio, in 2012 Symposium on VLSI Technology (VLSIT). pp. 53–54 (2012)

    Google Scholar 

  41. K. Tomioka, J. Motohisa, S. Hara, T. Fukui, Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475–3480 (2008). doi:10.1021/nl802398j

    Article  Google Scholar 

  42. K. Tomioka, M. Yoshimura, T. Fukui, A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012). doi:10.1038/nature11293

    Article  Google Scholar 

  43. M. Chhowalla, H.S. Shin, G. Eda et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5, 263–275 (2013). doi:10.1038/nchem.1589

    Article  Google Scholar 

  44. C. Gong, H. Zhang, W. Wang et al., Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013). doi:10.1063/1.4817409

    Article  Google Scholar 

  45. H. Fang, S. Chuang, T.C. Chang et al., High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012). doi:10.1021/nl301702r

    Article  Google Scholar 

  46. M. Chen, H. Nam, S. Wi et al., Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 103, 142110 (2013). doi:10.1063/1.4824205

    Article  Google Scholar 

  47. Y. Du, H. Liu, A.T. Neal et al., Molecular doping of multilayer field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett. 34, 1328–1330 (2013). doi:10.1109/LED.2013.2277311

    Article  Google Scholar 

  48. H. Fang, M. Tosun, G. Seol et al., Degenerate n-Doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991–1995 (2013). doi:10.1021/nl400044m

    Article  Google Scholar 

  49. S. Chuang, C. Battaglia, A. Azcatl et al., MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014). doi:10.1021/nl4043505

    Article  Google Scholar 

  50. D. Kiriya, M. Tosun, P. Zhao et al., Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014). doi:10.1021/ja5033327

    Article  Google Scholar 

  51. H.-Y. Park, M.-H. Lim, J. Jeon et al., Wide-range controllable n-Doping of molybdenum disulfide (MoS2) through thermal and optical activation. ACS Nano 9, 2368–2376 (2015). doi:10.1021/acsnano.5b00153

    Article  Google Scholar 

  52. J.H. Yu, H.R. Lee, S.S. Hong et al., Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 15, 1031–1035 (2015). doi:10.1021/nl503897h

    Article  Google Scholar 

  53. T. Roy, M. Tosun, X. Cao et al., Dual-gated MoS2/WSe2 van der waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015). doi:10.1021/nn507278b

    Article  Google Scholar 

  54. K. Boucart, A.M. Ionescu, A new definition of threshold voltage in Tunnel FETs. Solid-state electronics 52, 1318–1323 (2008). doi:10.1016/j.sse.2008.04.003

    Article  Google Scholar 

  55. W. Lee, W. Choi, Influence of inversion layer on tunneling field-effect transistors. IEEE Electron Device Lett. 32, 1191–1193 (2011). doi:10.1109/LED.2011.2159257

    Article  Google Scholar 

  56. S. Agarwal, E. Yablonovitch, Band-edge steepness obtained from esaki/backward diode current-voltage characteristics. IEEE Trans. Electron Devices 61, 1488–1493 (2014). doi:10.1109/TED.2014.2312731

    Article  Google Scholar 

  57. R.M. Iutzi, E.A. Fitzgerald, Microstructure and conductance-slope of InAs/GaSb tunnel diodes. J. Appl. Phys. 115, 234503 (2014). doi:10.1063/1.4883756

    Article  Google Scholar 

Download references

Acknowledgments

Part of the work presented in this chapter was supported by the Center for Energy Efficient Electronics Science (NSF Award 0939514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yu, T., Hoyt, J.L., Antoniadis, D.A. (2016). Tunneling FET Fabrication and Characterization. In: Zhang, L., Chan, M. (eds) Tunneling Field Effect Transistor Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-31653-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31653-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31651-2

  • Online ISBN: 978-3-319-31653-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics