Skip to main content

Some Asymptotic Results for Strongly Critical Branching Processes with Immigration in Varying Environment

  • Chapter
  • First Online:
Book cover Branching Processes and Their Applications

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 219))

Abstract

Strongly critical branching processes with immigration (BPI) are investigated in varying environment (VE) when the time-varying offspring mean converges to 1 fast enough. Under natural assumptions a diffusion approximation is derived when either the offspring or the immigration variances are strictly positive. In the case of asymptotically vanishing offspring variances a fluctuation limit theorem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  2. Fearn, D.H.: Galton-Watson processes with generation dependence. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 4, pp. 159–172. University of California Press, Berkeley (1972)

    Google Scholar 

  3. González, M., del Puerto, I.: Diffusion approximation of an array of controlled branching processes. Methodol. Comput. Appl. Probab. 14, 843–861 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. González, M., Minuesa, C., Mota, M., del Puerto, I., Ramos, A.: An inhomogeneous controlled branching process. Lith. Math. J. 55 (1), 61–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  6. Ispány, M., Pap, G.: A note on weak convergence of step processes. Acta Math. Hung. 126 (4), 381–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ispány, M., Pap, G., van Zuijlen, M.C.A.: Fluctuation limit of branching processes with immigration and estimation of the means. Adv. Appl. Probab. 37 (2), 523–538 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jagers, P.: Galton-Watson processes in varying environments. J. Appl. Probab. 11 (1), 174–178 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    MATH  Google Scholar 

  10. Keiding, N., Nielsen, J.: Branching processes with varying and random geometric offspring distributions. J. Appl. Probab. 12 (1), 135–141 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mitov, K.V., Omey, E.: A branching process with immigration in varying environments. Commun. Stat. Theory Methods 43 (24), 5211–5225 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rahimov, I.: Random Sums and Branching Stochastic Processes. Lecture Notes in Statistics. Springer, New York (1995)

    Book  MATH  Google Scholar 

  13. Rahimov, I.: Functional limit theorems for critical processes with immigration. Adv. Appl. Probab. 39 (4), 1054–1069 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn., corrected 2nd printing. Springer, Berlin (2001)

    Google Scholar 

  15. Wei, C.Z., Winnicki, J.: Some asymptotic results for the branching process with immigration. Stoch. Process. Appl. 31 (2), 261–282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewer for drawing his attention to the close connection between branching processes with immigration and controlled branching processes and to the papers González and del Puerto [3] and González et al. [4].

This paper was finished when the author was a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márton Ispány .

Editor information

Editors and Affiliations

Appendix

Appendix

In the proofs we need the following result about convergence of random step processes towards a diffusion process, see Ispány and Pap [6, Corollary 2.2].

Theorem 5.3

Let \(\beta: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}\) and \(\gamma: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}\) be continuous functions. Assume that uniqueness in the sense of probability law holds for the SDE

$$\displaystyle{ \mathrm{d}\,\boldsymbol{\mathcal{U}}_{t} =\beta (t,\boldsymbol{\mathcal{U}}_{t})\,\mathrm{d}t +\gamma (t,\boldsymbol{\mathcal{U}}_{t})\,\mathrm{d}\mathcal{W}_{t}\;,\qquad t \in \mathbb{R}_{+}\;, }$$
(5.39)

with initial value \(\mathcal{U}_{0} = u_{0}\) for all \(u_{0} \in \mathbb{R}\), where \((\mathcal{W}_{t})_{t\in \mathbb{R}_{+}}\) is a standard Wiener process. Let \((\mathcal{U}_{t})_{t\in \mathbb{R}_{+}}\) be a solution of (5.39) with initial value \(\mathcal{U}_{0} = 0\).

For each \(n \in \mathbb{N}\) , let \((U_{k}^{n})_{k\in \mathbb{N}}\) be a sequence of random variables adapted to a filtration \((\mathcal{F}_{k}^{n})_{k\in \mathbb{Z}_{+}}\) . Let \(\mathcal{U}_{t}^{n}:=\sum _{ k=1}^{\lfloor nt\rfloor }U_{k}^{n}\) , \(t \in \mathbb{R}_{+},n \in \mathbb{N}\) . Suppose \(\mathrm{E}\big(\vert U_{k}^{n}\vert ^{2}\big) <\infty\) for all \(n,k \in \mathbb{N}\) . Suppose that, for each T > 0,

$$\displaystyle\begin{array}{rcl} & & \sup \limits _{t\in [0,T]}\left \vert \sum _{k=1}^{\lfloor nt\rfloor }\mathrm{E}{\bigl (U_{ k}^{n}\,\vert \,\mathcal{F}_{ k-1}^{n}\bigr )} -\int _{ 0}^{t}\beta (s,\boldsymbol{\mathcal{U}}_{ s}^{n})\mathrm{d}s\right \vert \stackrel{\mathrm{P}}{\longrightarrow }0\;, \\ & & \sup \limits _{t\in [0,T]}\left \vert \sum \limits _{k=1}^{\lfloor nt\rfloor }\mathsf{Var}{\bigl (U_{ k}^{n}\,\vert \,\mathcal{F}_{ k-1}^{n}\bigr )} -\int _{ 0}^{t}\left (\gamma (s,\boldsymbol{\mathcal{U}}_{ s}^{n})\right )^{2}\mathrm{d}s\right \vert \stackrel{\mathrm{P}}{\longrightarrow }0\;, \\ & & \sum \limits _{k=1}^{\lfloor nT\rfloor }\mathrm{E}\big(\vert U_{ k}^{n}\vert ^{2}\mathbb{1}_{\{ \vert U_{k}^{n}\vert>\theta \}}\,\big\vert \,\mathcal{F}_{k-1}^{n}\big)\stackrel{\mathrm{P}}{\longrightarrow }0\quad \text{for all}\;\theta> 0\;.{}\end{array}$$
(5.40)

Then   \(\boldsymbol{\mathcal{U}}^{n}\stackrel{\mathcal{L}}{\longrightarrow }\boldsymbol{\mathcal{U}}\)  as  n →∞.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ispány, M. (2016). Some Asymptotic Results for Strongly Critical Branching Processes with Immigration in Varying Environment. In: del Puerto, I., et al. Branching Processes and Their Applications. Lecture Notes in Statistics(), vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-31641-3_5

Download citation

Publish with us

Policies and ethics