We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Constitutive Models | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Constitutive Models

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Modeling High Temperature Materials Behavior for Structural Analysis

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this chapter we discuss constitutive equations to describe material behavior of high-temperature materials under multi-axial stress state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The derivative of the rotation tensor with the fixed axis of rotation is \(\displaystyle \mathrm {d}\pmb Q(\varphi \pmb m)=\pmb m\times \pmb Q(\varphi \pmb m)\mathrm {d}\varphi \), see also Appendix B.7.

  2. 2.

    The rules for derivatives of scalar-valued functions with respect to tensors are given in Appendix B.4.

  3. 3.

    For the sake of brevity tilde is omitted.

  4. 4.

    The orthogonal symmetry group includes also reflections. Since any reflection is the composition of a rotation and the inversion \(-\pmb I\), it is possible to consider the proper orthogonal group first and then apply the inversion.

  5. 5.

    Five different cases of the transverse isotropy can be defined, see, for example, Spencer (1987), Zheng and Boehler (1994).

  6. 6.

    This assumption is deduced from the principle of invariance under superimposed rigid body motions, e.g. Bertram (2012).

  7. 7.

    From this consideration it does not follow that only isotropic materials can be described. Indeed, we assumed that the stress tensor depends only on the velocity gradient, which is not true for anisotropic materials. Extensions will be discussed in Sect. 5.4.3.

  8. 8.

    For example, to identify creep of metals, the creep rate is considered as a function of the stress based on results of uni-axial creep tests.

  9. 9.

    At high temperature the yield point cannot be defined, the \(R_{\mathrm {p} 0.2}\) stress value is used instead in most cases, see Sect. 1.1.1.1.

  10. 10.

    The dependence on the temperature is dropped for the sake of brevity.

  11. 11.

    The change in shape is governed in such a way that the the work per unit time remains unchanged compared to small variations of the stresses within the yield limit. Since the elasticity theory provides a similar relationship between the deformations and the elastic potential, so I call the stress function F also the “plastic potential” or “flow potential”.

  12. 12.

    For the description of elastic material behavior instead of \(\pmb \sigma \) a strain tensor, e.g. the Cauchy-Green strain tensor is introduced. The five transversely isotropic invariants are the arguments of the strain energy density function, see Sect. 5.3.3.

  13. 13.

    The intermediate configuration can only be used as illustrative since it has a number of conceptual shortcomings. Historical essays and critical remarks to the multiplicative decomposition are presented in Naghdi (1990), Bertram (2012), Xiao et al. (2006).

  14. 14.

    See the analysis presented in Sect. 5.3.1.

  15. 15.

    From this consideration it does not follow that only isotropic plasticity can be described. Indeed, we assumed that the stress tensor depends only on \(\pmb \Lambda ^\mathrm {pl}\), which is not true for anisotropic materials.

  16. 16.

    Here we assumed that the tensor \(\pmb V_{\mathrm {el}}\) has distinct principal values.

  17. 17.

    The model was firs published in 1966 in a CEGB report, see Frederick and Armstrong (2007) for historical remarks.

References

  • Abe F (2009) Analysis of creep rates of tempered martensitic 9% Cr steel based on microstructure evolution. Mater Sci Eng: A 510:64–69

    Article  Google Scholar 

  • Altenbach H (1999) Classical and nonclassical creep models. In: Altenbach H, Skrzypek J (eds) Creep and damage in materials and structures. Springer, Wien, New York, pp. 45–95, CISM Lecture Notes No. 399

    Google Scholar 

  • Altenbach H (2001) A generalized limit criterion with application to strength, yielding, and damage of isotropic materials. In: Lemaitre J (ed) Handbook of materials behaviour models. Academic Press, San Diego, pp 175–186

    Chapter  Google Scholar 

  • Altenbach H (2012) Kontinuumsmechanik - Einführung in die materialunabhängigen und materialabhängigen Gleichungen, 2nd edn. Springer, Berlin

    Google Scholar 

  • Altenbach H, Blumenauer H (1989) Grundlagen und Anwendungen der Schädigungsmechanik. Neue Hütte 34(6):214–219

    Google Scholar 

  • Altenbach H, Naumenko K (1997) Creep bending of thin-walled shells and plates by consideration of finite deflections. Comput Mech 19:490–495

    Article  MATH  Google Scholar 

  • Altenbach H, Zhilin PA (1988) Osnovnye uravneniya neklassicheskoi teorii uprugikh obolochek (Basic equations of a non-classical theory of elastic shells, in Russ.). Adv Mech 11:107–148

    MathSciNet  Google Scholar 

  • Altenbach H, Zolochevsky A (1996) A generalized failure criterion for three-dimensional behaviour of isotropic materials. Eng Fract Mech 54(1):75–90

    Article  Google Scholar 

  • Altenbach H, Zolochevsky AA (1994) Eine energetische Variante der Theorie des Kriechens und der Langzeitfestigkeit für isotrope Werkstoffe mit komplizierten Eigenschaften. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 74(3):189–199

    Article  Google Scholar 

  • Altenbach H, Altenbach J, Schieße P (1990) Konzepte der schädigungsmechanik und ihre anwendung bei der werkstoffmechanischen bauteilanalyse. Technische Mechanik 11(2):81–93

    Google Scholar 

  • Altenbach H, Schieße P, Zolochevsky A (1991) Zum Kriechen isotroper Werkstoffe mit komplizierten Eigenschaften. Rheol Acta 30:388–399

    Article  Google Scholar 

  • Altenbach H, Altenbach J, Zolochevsky A (1995) Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart

    Google Scholar 

  • Altenbach H, Altenbach J, Rikards R (1996) Einführung in die Mechanik der Laminat- und Sandwichtragwerke. Deutscher Verlag für Grundstoffindustrie, Stuttgart

    Google Scholar 

  • Altenbach H, Morachkovsky O, Naumenko K, Sychov A (1997) Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions. Arch Appl Mech 67:339–352

    Article  MATH  Google Scholar 

  • Altenbach H, Altenbach J, Naumenko K (1998) Ebene Flächentragwerke. Springer, Berlin

    Book  Google Scholar 

  • Altenbach H, Kolarow G, Morachkovsky O, Naumenko K (2000) On the accuracy of creep-damage predictions in thinwalled structures using the finite element method. Comput Mech 25:87–98

    Article  MATH  Google Scholar 

  • Altenbach H, Huang C, Naumenko K (2001a) Modelling of creep damage under the reversed stress states considering damage activation and deactivation. Technische Mechanik 21(4):273–282

    Google Scholar 

  • Altenbach H, Kushnevsky V, Naumenko K (2001b) On the use of solid- and shell-type finite elements in creep-damage predictions of thinwalled structures. Arch Appl Mech 71:164–181

    Article  MATH  Google Scholar 

  • Altenbach H, Huang C, Naumenko K (2002) Creep damage predictions in thin-walled structures by use of isotropic and anisotropic damage models. J Strain Anal Eng Des 37(3):265–275

    Article  Google Scholar 

  • Altenbach H, Naumenko K, L’vov GI, Pylypenko S (2003a) Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber reinforced thermoplastics. Mech Compos Mater 39:221–234

    Google Scholar 

  • Altenbach H, Naumenko K, Zhilin P (2003b) A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mech Thermodyn 15:539–570

    Article  MathSciNet  MATH  Google Scholar 

  • Altenbach H, Altenbach J, Kissing W (2004) Mechanics of composite structural elements. Springer, Berlin

    Book  Google Scholar 

  • Altenbach H, Naumenko K, Zhilin P (2006) A note on transversely isotropic invariants. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 86:162–168

    Article  MathSciNet  MATH  Google Scholar 

  • Altenbach H, Naumenko K, Pylypenko S, Renner B (2007) Influence of rotary inertia on the fiber dynamics in homogeneous creeping flows. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 87(2):81–93

    Article  MathSciNet  MATH  Google Scholar 

  • Altenbach H, Gorash Y, Naumenko K (2008) Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges. Acta Mech 195:263–274

    Article  MATH  Google Scholar 

  • Altenbach H, Brigadnov I, Naumenko K (2009) Rotation of a slender particle in a shear flow: influence of the rotary inertia and stability analysis. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 89(10):823–832

    Article  MATH  Google Scholar 

  • Altenbach H, Kozhar S, Naumenko K (2013) Modeling creep damage of an aluminum-silicon eutectic alloy. Int J Damage Mech 22(5):683–698

    Article  Google Scholar 

  • Atkin RJ, Craine RE (1976) Continuum theories of mixtures: basic theory and historical development. Q J Mech Appl Math 29:209–244

    Article  MathSciNet  MATH  Google Scholar 

  • Backhaus G (1983) Deformationsgesetze. Akademie-Verlag, Berlin

    Google Scholar 

  • Barkar T, Ågren J (2005) Creep simulation of 9–12%Cr steels using the composite model with thermodynamically calculated input. Mater Sci Eng A 395:110–115

    Article  Google Scholar 

  • Bassani JL, Hawk DE (1990) Influence of damage on crack-tip fields under small-scale-creep conditions. Int J Fract 42:157–172

    Article  Google Scholar 

  • Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley

    Google Scholar 

  • Bernhardi O, Mücke R (2000) A lifetime prediction procedure for anisotropic materials. Commmun Numer Meth Eng 16:519–527

    Article  MATH  Google Scholar 

  • Bertram A (2012) Elasticity and plasticity of large deformations, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bertram A, Olschewski J (1996) Anisotropic modelling of the single crystal superalloy SRR99. Comput Mater Sci 5:12–16

    Article  Google Scholar 

  • Bertram A, Olschewski J (2001) A phenomenological anisotropic creep model for cubic single crystals. In: Lemaitre J (ed) Handbook of materials behaviour models. Academic Press, San Diego, pp 303–307

    Chapter  Google Scholar 

  • Besseling JF, van der Giessen E (1994) Mathematical modelling of inelastic deformation. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Betten J (1982) Zur Aufstellung einer Integritätsbasis für Tensoren zweiter und vierter Stufe. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 62(5):T274–T275

    MathSciNet  MATH  Google Scholar 

  • Betten J (1984) Materialgleichungen zur Beschreibung des sekundären und tertiären Kriechverhaltens anisotroper Stoffe. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 64:211–220

    Article  MATH  Google Scholar 

  • Betten J (1993) Kontinuumsmechanik. Springer, Berlin

    Book  Google Scholar 

  • Betten J (1998) Anwendungen von Tensorfunktionen in der Kontinuumsmechanik anisotroper Materialien. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 78(8):507–521

    Article  MathSciNet  Google Scholar 

  • Betten J (2008) Creep mechanics, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Betten J, El-Magd E, Meydanli SC, Palmen P (1995) Untersuchnung des anisotropen Kriechverhaltens vorgeschädigter Werkstoffe am austenitischen Stahl X8CrNiMoNb 1616. Arch Appl Mech 65:121–132

    Article  Google Scholar 

  • Billington EW (1985) The Poynting-Swift effect in relation to initial and post-yield deformation. Int J Solids Struct 21(4):355–372

    Article  MATH  Google Scholar 

  • Blum W (2008) Mechanisms of creep deformation in steel. In: Abe F, Kern TU, Viswanathan R (eds) Creep-resistant steels. Woodhead Publishing, Cambridge, pp 365–402

    Chapter  Google Scholar 

  • Bodnar A, Chrzanowski M (1991) A non-unilateral damage in creeping plates. In: Zyczkowski M (ed) Creep in structures. Springer, Heidelberg, pp 287–293

    Chapter  Google Scholar 

  • Boehler JP (ed) (1987a) Application of tensor functions in solid mechanics. CISM Lecture Notes No. 292. Springer, Wien

    Google Scholar 

  • Boehler JP (1987b) On a rational formulation of isotropic and anisotropic hardening. In: Boehler JP (ed) Applications of tensor functions in solid mechanics. Springer, Wien, pp 99–122, CISM Lecture Notes No. 292

    Google Scholar 

  • Boehler JP (1987c) Representations for isotropic and anisotropic non-polynomial tensor functions. In: Boehler JP (ed) Applications of tensor functions in solid mechanics. Springer, Wien, pp 31–53, CISM Lecture Notes No. 292

    Google Scholar 

  • Boehler JP (1987d) Yielding and failure of transversely isotropic solids. In: Boehler JP (ed) Applications of tensor functions in solid mechanics. Springer, Wien, pp 67–97, CISM Lecture Notes No. 292

    Google Scholar 

  • Böhlke T (2000) Crystallographic texture evolution and elastic anisotropy. Simulation, modelling and applications, PhD-Thesis. Shaker Verlag, Aachen

    Google Scholar 

  • Boyle JT (2012) The creep behavior of simple structures with a stress range-dependent constitutive model. Arch Appl Mech 82(4):495–514

    Article  MathSciNet  MATH  Google Scholar 

  • Boyle JT, Spence J (1983) Stress analysis for creep. Butterworth, London

    Google Scholar 

  • Burlakov AV, Lvov GI, Morachkovsky OK (1977) Polzuchest’ tonkikh obolochek (Creep of thin shells, in Russ.). Kharkov State Univ. Publ., Kharkov

    Google Scholar 

  • Cane BJ (1981) Creep fracture of dispersion strengthened low alloy ferritic steels. Acta Metall 29:1581–1591

    Article  Google Scholar 

  • Cazacu O, Barlat F (2003) Application of the theory of representation to describe yielding of anisotropic aluminium alloys. Int J Eng Sci 41:1367–1385

    Article  Google Scholar 

  • Chaboche JL (1988a) Continuum damage mechanics: part I—general concepts. J Appl Mech 55:59–64

    Article  Google Scholar 

  • Chaboche JL (1988b) Continuum damage mechanics: part II—damage growth, crack initiation, and crack growth. J Appl Mech 55:65–71

    Article  Google Scholar 

  • Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast 5:247–302

    Article  MATH  Google Scholar 

  • Chaboche JL (1999) Thermodynamically founded cdm models for creep and other conditions. In: Altenbach H, Skrzypek J (eds) Creep and damage in materials and structures, Springer, Wien, New York, pp 209–283, CISM Lecture Notes No. 399

    Google Scholar 

  • Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive equations. Int J Plast 24:1642–1693

    Article  MATH  Google Scholar 

  • Chawla KK (1987) Composite materials. Springer, New York

    Book  Google Scholar 

  • Cordebois J, Sidoroff F (1983) Damage induced elastic anisotropy. In: Boehler JP (ed) Mechanical behaviours of anisotropic solids. Martinus Nijhoff Publishers, Boston, pp 761–774

    Google Scholar 

  • Courant R, Hilbert D (1989) Methods of mathematical physics, vol. 2. Partial differential equations. Wiley Interscience Publication, New York

    Google Scholar 

  • Cvelodub IY (1991) Postulat ustoichivosti i ego prilozheniya v teorii polzuchesti metallicheskikh materialov (On the stability postulate and its apllication in the creep theory of metallic materials, in Russ.). Institute Gidrodinamiki, Novosibirsk

    Google Scholar 

  • Dunne FPE, Hayhurst DR (1992) Continuum damage based constitutive equations for copper under high temperature creep and cyclic plasticity. Proc R Soc London A: Math Phys Eng Sci A437:545–566

    Article  Google Scholar 

  • Dyson BF (1992) Material data requirements, creep damage machanisms, and predictive models. In: Larson LH (ed) High temperature structural design. Mechanical Engineering Publ, London, pp 335–354

    Google Scholar 

  • Dyson BF, McLean M (1998) Microstructural evolution and its effects on the creep performance of high temperature alloys. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability of creep resistant alloys for high temperature plant applications. Cambridge University Press, Cambridge, pp 371–393

    Google Scholar 

  • Dyson BF, McLean M (2001) Micromechanism-quantification for creep constitutive equations. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 3–16

    Chapter  Google Scholar 

  • El-Magd E, Nicolini G (1999) Creep behaviour and microstructure of dispersion-strengthened pm-aluminium materials at elevated temperatures. In: Mughrabi H, Gottstein G, Mecking H, Riedel H, Tobolski J (eds) Microstructure and mechanical properties of metallic high-temperature materials: research report/DFG. Wiley-VCH, Weinheim, pp 445–464

    Google Scholar 

  • El-Magd E, Betten J, Palmen P (1996) Auswirkung der Schädigungsanisotropie auf die Lebensdauer von Stählen bei Zeitstandbeanspruchung. Materialwiss Werkstofftech 27:239–245

    Article  Google Scholar 

  • Faria SH (2001) Mixtures with continuous diversity: general theory and application to polymer solutions. Continuum Mech Thermodyn 13:91–120

    Article  MATH  Google Scholar 

  • François D, Pineau A, Zaoui A (1998) Mechanical behavior of materials, vol II. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • François D, Pineau A, Zaoui A (2012) Mechanical behaviour of materials, vol ii. In: Fracture mechanics and damage, vol 191. Springer Science & Business Media

    Google Scholar 

  • Frederick CO, Armstrong PJ (2007) A mathematical representation of the multiaxial Bauschinger effect. Mater High Temp 24(1):1–26

    Article  Google Scholar 

  • Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon, Oxford

    Google Scholar 

  • Ganczarski A, Skrzypek J (2001) Application of the modified murakami’s anisotropic creep-damage model to 3d rotationally-symmetric problem. Technische Mechanik 21(4):251–260

    Google Scholar 

  • Gariboldi E, Casaro F (2007) Intermediate temperature creep behaviour of a forged Al-Cu-Mg-Si-Mn alloy. Mater Sci Eng: A 462(1):384–388

    Article  Google Scholar 

  • Gaudig W, Kussmaul K, Maile K, Tramer M, Granacher J, Kloos KH (1999) A microstructural model to predict the multiaxial creep and damage in 12 Cr steel grade at 550\(^{\circ }\)c. In: Mughrabi H, Gottstein G, Mecking H, Riedel H, Tobolski J (eds) Microstructure and mechanical properties of metallic high-temperature materials: research report/DFG. Wiley-VCH, Weinheim, pp 192–205

    Google Scholar 

  • Gibson RF (1994) Principles of composite materials. McGraw-Hill, New York

    Google Scholar 

  • Giesekus H (1994) Phänomenologische Rheologie. Springer, Berlin

    Book  Google Scholar 

  • Gorev BV, Rubanov VV, Sosnin OV (1979) O polzuchesti materialov s raznymi svoistvami pri rastyazhenii i szhatii (on the creep of materials with different properties in tension and compression, in russ.). Problemy prochnosti 7:62–67

    Google Scholar 

  • Granger R (1994) Experiments in heat transfer and thermodynamics. Cambridge University Press

    Google Scholar 

  • Hahn HG (1985) Elastizitätstheorie. Teubner, Stuttgart, B.G

    Book  Google Scholar 

  • Hayhurst DR (1972) Creep rupture under multiaxial states of stress. J Mech Phys Solids 20:381–390

    Article  Google Scholar 

  • Hayhurst DR (1994) The use of continuum damage mechanics in creep analysis for design. J Strain Anal Eng Des 25(3):233–241

    Article  Google Scholar 

  • Hayhurst DR (1999) Materials data bases and mechanisms-based constitutive equations for use in design. In: Altenbach H, Skrzypek J (eds) Creep and damage in materials and structures. Springer, Wien, New York, pp 285–348, CISM Lecture Notes No. 399

    Google Scholar 

  • Hayhurst DR, Leckie FA (1990) High temperature creep continuum damage in metals. In: Boehler JP (ed) Yielding damage and failure of anisotropic solids. Mechanical Engineering Publ, London, pp 445–464

    Google Scholar 

  • Hayhurst DR, Wong MT, Vakili-Tahami F (2002) The use of CDM analysis techniques in high temperature creep failure of welded structures. JSME Int J Series A, Solid Mech Mater Eng 45:90–97

    Article  Google Scholar 

  • Hill R (1950) Math Theor Plast Mater Res Eng. Oxford University Press, London

    Google Scholar 

  • Hyde TH, Sun W, Becker AA, Williams JA (1997) Creep continuum damage constitutive equations for the base, weld and heat-affected zone materials of a service-aged 1/2Cr1/2Mo1/4V:2 1/4Cr1Mo multipass weld at 640\(^{\circ }\)C. J Strain Anal Eng Des 32(4):273–285

    Article  Google Scholar 

  • Hyde TH, Sun W, Williams JA (1999) Creep behaviour of parent, weld and HAZ materials of new, service aged and repaired 1/2Cr1/2Mo1/4V: 21/4Cr1Mo pipe welds at 640\(^{\circ }\)C. Mater High Temp 16(3):117–129

    Article  Google Scholar 

  • Hyde TH, Sun W, Becker AA (2000) Failure prediction for multi-material creep test specimens using steady-state creep rupture stress. Int J Mech Sci 42:401–423

    Article  MATH  Google Scholar 

  • Hyde TH, Sun W, Agyakwa PA, Shipeay PH, Williams JA (2003a) Anisotropic creep and fracture behaviour of a 9CrMoNbV weld metal at 650\(^\circ \)C. In: Skrzypek JJ, Ganczarski AW (eds) Anisotropic behaviour of damaged materials. Springer, Berlin, pp 295–316

    Chapter  Google Scholar 

  • Hyde TH, Sun W, Williams JA (2003b) Creep analysis of pressurized circumferential pipe weldments—a review. J Strain Anal Eng Des 38(1):1–29

    Article  Google Scholar 

  • Ilschner B (1973) Hochtemperatur-Plastizität. Springer, Berlin

    Book  Google Scholar 

  • Inoue T (1988) Inelastic constitutive models under plasticity-creep interaction condition—theories and evaluations. JSME Int J Series 1, Solid Mech Strength Mater 31(4):653–663

    Google Scholar 

  • Inoue T, Ohno N, Suzuki A, Igari T (1989) Evaluation of inelastic constitutive models under plasticity-creep interaction for 21/4Cr-1Mo steel at 600\(^{\circ }\)c. Nucl Eng Des 114:259–309

    Google Scholar 

  • Kachanov LM (1969) Osnovy teorii plastichnosti (Basics of the theory of plasticity, in Russ.). Nauka, Moskva

    Google Scholar 

  • Kaliszky S (1984) Plastizitätslehre Theorie und Technische Anwendung. VDI-Verlag, Düsseldorf

    MATH  Google Scholar 

  • Kassner ME, Pérez-Prado MT (2004) Fundamentals of creep in melals and alloys. Elsevier, Amsterdam

    Google Scholar 

  • Kawai M (1989) Creep and plasticity of austenitic stainless steel under multiaxial non-proportional loadings at elevated temperatures. In: Hui D, Kozik TJ (eds) Visco-plastic behavior of new materials. ASME, PVP-vol 184. New York, pp 85–93

    Google Scholar 

  • Kawai M (1996) Coupled creep-damage modelling for isotropic hardening and kinematic hardening materials. Design and life assessment at high temperature. Mechanical Engineering Publ, London, pp 91–100

    Google Scholar 

  • Kawai M (1997) Coupled inelasticity and damage model for metal matrix composites. Int J Damage Mech 6:453–478

    Article  Google Scholar 

  • Kawai M (2002) Constitutive modelling of creep and damage behaviors of the non-Mises type for a class of polycrystalline metals. Int J Damage Mech 11:223–245

    Article  Google Scholar 

  • Khan AS, Huang S (1995) Continuum theory of plasticity. Wiley, New York

    MATH  Google Scholar 

  • Konkin VN, Morachkovskij OK (1987) Polzuchest’ i dlitel’naya prochnost’ legkikh splavov, proyavlyayushchikh anizotropnye svoistva (Creep and long-term strength of light alloys with anisotropic properties, in Russ.). Problemy prochnosti 5:38–42

    Google Scholar 

  • Kostenko Y, Almstedt H, Naumenko K, Linn S, Scholz A (2013) Robust methods for creep fatigue analysis of power plant components under cyclic transient thermal loading. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, pp V05BT25A040–V05BT25A040

    Google Scholar 

  • Kowalewski Z (1987) The surface of constant rate of energy dissipation under creep and its experimental determination. Arch Mech 39:445–459

    Google Scholar 

  • Kowalewski Z (1991) Creep behaviour of copper under plane stress state. Int J Plast 7:387–400

    Article  MathSciNet  Google Scholar 

  • Kowalewski ZL (1996) Creep rupture of copper under complex stress state at elevated temperature. Design and life assessment at high temperature. Mechanical Engineering Publ, London, pp 113–122

    Google Scholar 

  • Kowalewski ZL (2001) Assessment of the multiaxial creep data based on the isochronous creep surface concept. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 401–418

    Google Scholar 

  • Kowalewski ZL, Hayhurst DR, Dyson BF (1994) Mechanisms-based creep constitutive equations for an aluminium alloy. J Strain Anal Eng Des 29(4):309–316

    Article  Google Scholar 

  • Krajcinovic D (1996) Damage mechanics. In: Applied mathematics and mechanics, vol 41. North-Holland, Amsterdam

    Google Scholar 

  • Kraus H (1980) Creep analysis. Wiley, New York

    Google Scholar 

  • Krausz AS, Krausz K (1996) Unified constitutive laws of plastic deformation. Academic Press, San Diego

    MATH  Google Scholar 

  • Krawietz A (1986) Materialtheorie. Mathematische Beschreibung des phänomenologischen thermomechanischen Verhalten. Springer, Berlin

    Google Scholar 

  • Krempl E (1996) A small-strain viscoplasticity theory based on overstress. In: Krausz AS, Krausz K (eds) Unified constitutive laws of plastic deformation. Academic Press, San Diego, pp 281–318

    Chapter  Google Scholar 

  • Krempl E (1999) Creep-plasticity interaction. In: Altenbach H, Skrzypek J (eds) Creep and damage in materials and structures. Springer, Wien, New York, pp 285–348, CISM Lecture Notes No. 399

    Google Scholar 

  • Kröner C, Altenbach H, Naumenko K (2009) Coupling of a structural analysis and flow simulation for short-fiber-reinforced polymers: property prediction and transfer of results. Mech Compos Mater 45(3):249–256

    Article  Google Scholar 

  • Landau LD, Lifshits EM, Kosevich AM, Pitaevskii LP (1986) Theory of elasticity. In: Course of theoretical physics. Butterworth-Heinemann

    Google Scholar 

  • Längler F, Naumenko K, Altenbach H, Ievdokymov M (2014) A constitutive model for inelastic behavior of casting materials under thermo-mechanical loading. J Strain Anal Eng Des 49:421–428

    Article  Google Scholar 

  • Leal LG, Hinch EJ (1973) Theoretical studies of a suspension of rigid particles affected by brownian couples. Rheol Acta 12:127–132

    Article  Google Scholar 

  • Leckie FA, Hayhurst DR (1977) Constitutive equations for creep rupture. Acta Metall 25:1059–1070

    Article  Google Scholar 

  • Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36(1):1–6

    Article  MATH  Google Scholar 

  • Lemaitre J (1996) A course on damage mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer

    Google Scholar 

  • Lewin G, Lehmann B (1977) Ergebnisse über das Spannungs-Verformungsverhalten von PVC, dargestellt an einem zylindrischen Bauelement. Wissenschaftliche Zeitschrift der Technischen Hochschule Magdeburg 21:415–422

    Google Scholar 

  • Lin J, Dunne FPE, Hayhurst DR (1999) Aspects of testpiece design responsible for errors in cyclic plasticity experiments. Int J Damage Mech 8:109–137

    Article  Google Scholar 

  • Liu Y, Murakami S (1998) Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis. JSME Int J Series A, Solid Mech Mater Eng 41:57–65

    Article  Google Scholar 

  • Lokhin VV, Sedov LI (1963) Nonlinear tensor functions of several tensor arguments. J Appl Math Mech 27(3):597–629

    Article  MathSciNet  MATH  Google Scholar 

  • Lubarda V (2001) Elastoplasticity theory. CRC Press

    Google Scholar 

  • Lucas GE, Pelloux RMN (1981) Texture and stress state dependent creep in Zircaloy-2. Metall Trans A 12A:1321–1331

    Article  Google Scholar 

  • Lundell F (2011) The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift toward chaos to a single periodic solution. Phys Fluids 23(1):011, 704

    Google Scholar 

  • Lundell F, Carlsson A (2010) Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys Rev E 81(1):016, 323

    Google Scholar 

  • Lurie AI (1990) Nonlinear theory of elasticity. Dordrecht

    Google Scholar 

  • Lurie AI (2010) Theory of elasticity. In: Foundation of engineering mechanics. Springer

    Google Scholar 

  • Lvov I, Naumenko K, Altenbach H (2014) Homogenisation approach in analysis of creep behaviour in multipass weld. Mater Sci Technol 30(1):50–53

    Article  Google Scholar 

  • Mahnken R (2002) Anistropic creep modeling based on elastic projection operators with applications to CMSX-4 superalloy. Comput Meth Appl Mech Eng 191(15):1611–1637

    Article  MATH  Google Scholar 

  • Malinin NN (1975) Prikladnaya teoriya plastichnosti i polzuchesti (Applied theory of plasticity and creep, in Russ.). Mashinostroenie, Moskva

    Google Scholar 

  • Malinin NN (1981) Raschet na polzuchest’ konstrukcionnykh elementov (Creep calculations of structural elements, in Russ.). Mashinostroenie, Moskva

    Google Scholar 

  • Malinin NN, Khadjinsky GM (1969) K postroeniyu teorii polzuchesti s anizotropnym uprochneniem (On the formulation of a creep theory with anisotropic hardening, in Russ.). Izv AN SSSR Mechanika tverdogo tela 3:148–152

    Google Scholar 

  • Malinin NN, Khadjinsky GM (1972) Theory of creep with anisotropic hardening. Int J Mech Sci 14:235–246

    Article  MATH  Google Scholar 

  • Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Miller AK (ed) (1987) Unified constitutive equations for creep and plasticity. Elsevier, London, New York

    Google Scholar 

  • von Mises R (1928) Mechanik der plastischen Formänderung von Kristallen. ZAMM-J Appl Math Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 8(3):161–185

    Article  MATH  Google Scholar 

  • Mohrmann R, Sester M (1999) A multiaxial model for the evolution of the microstructure and for the mechanical behaviour of a 12% chromium steel under creep conditions. In: Mughrabi H, Gottstein G, Mecking H, Riedel H, Tobolski J (eds) Microstruct Mech Prop Metall High-Temp Mater: Res Report/DFG. Wiley-VCH, Weinheim, pp 206–221

    Google Scholar 

  • Morishita T, Hirao M (1997) Creep damage modelling based on ultrasonic velocities in copper. Int J Solids Struct 34:1169–1182

    Article  Google Scholar 

  • Mücke R, Bernhardi O (2003) A constitutive model for anisotropic materials based on Neuber’s rule. Comput Meth Appl Mech Eng 192:4237–4255

    Article  MATH  Google Scholar 

  • Müller I (2007) A history of thermodynamics: the doctrine of energy and entropy. Springer

    Google Scholar 

  • Murakami S (1983) Notion of continuum damage mechanics and its application to anisotropic creep damage theory. J Eng Mater Technol 105:99–105

    Article  Google Scholar 

  • Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture. In: Solid mechanics and its applications. Springer

    Google Scholar 

  • Murakami S, Ohno N (1981) A continuum theory of creep and creep damage. In: Ponter ARS, Hayhurst DR (eds) Creep in structures. Springer, Berlin, pp 422–444

    Chapter  Google Scholar 

  • Murakami S, Sanomura Y (1985) Creep and creep damage of copper under multiaxial states of stress. In: Sawczuk A, Bianchi B (eds) Plasticity today—modelling. methods and applications. Elsevier, London, New York, pp 535–551

    Google Scholar 

  • Murakami S, Sanomura Y, Hattori M (1986) Modelling of the coupled effect of plastic damage and creep damage in nimonic 80a. Int J Solids Struct 22(4):373–386

    Article  Google Scholar 

  • Muskhelishvili N (2013) Some basic problems of the mathematical theory of elasticity. Springer, Netherlands

    Google Scholar 

  • Nabarro FRN, de Villiers HL (1995) The physics of creep. In: Creep and creep-resistant alloys. Taylor & Francis, London

    Google Scholar 

  • Naghdi PM (1990) A critical review of the state of finite plasticity. J Appl Math Phys (ZAMP) 41:316–394

    Article  MathSciNet  MATH  Google Scholar 

  • Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multi-pass weld metal. Arch Appl Mech 74:808–819

    Article  MATH  Google Scholar 

  • Naumenko K, Altenbach H (2007) Modelling of creep for structural analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-Mg-Si alloy. Mater Sci Eng: A 618:368–376

    Article  Google Scholar 

  • Naumenko K, Altenbach H, Gorash Y (2009) Creep analysis with a stress range dependent constitutive model. Arch Appl Mech 79:619–630

    Article  MATH  Google Scholar 

  • Naumenko K, Altenbach H, Kutschke A (2011a) A combined model for hardening, softening and damage processes in advanced heat resistant steels at elevated temperature. Int J Damage Mech 20:578–597

    Article  Google Scholar 

  • Naumenko K, Kutschke A, Kostenko Y, Rudolf T (2011b) Multi-axial thermo-mechanical analysis of power plant components from 9–12%Cr steels at high temperature. Eng Fract Mech 78:1657–1668

    Article  Google Scholar 

  • Nellis G, Klein S (2009) Heat transfer. Cambridge University Press

    Google Scholar 

  • Nemat-Nasser S (2004) Plasticity: A treatise on finite deformation of heterogeneous inelastic materials. Cambridge University Press, Cambridge Monographs on Mechanics

    MATH  Google Scholar 

  • Neuber H (2013) Kerbspannungslehre: Theorie der Spannungskonzentration. Genaue Berechnung der Festigkeit. Klassiker der Technik, Springer

    Google Scholar 

  • Nikitenko AF (1984) Eksperimental’noe obosnovanie gipotezy suschestvovaniya poverkhnosti polzuchesti v usloviyakh slozhnogo nagruzheniya, (experimental justification of the hypothsis on existence of the creep surface under complex loading conditions, in russ.). Problemy prochnosti 8:3–8

    Google Scholar 

  • Noll W (1972) A new mathematical theory of simple materials. Arch Ration Mech Anal 48:1–50

    MathSciNet  MATH  Google Scholar 

  • Nye JF (1992) Physical properties of crystals. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  • Odqvist FKG (1974) Mathematical theory of creep and creep rupture. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Odqvist FKG, Hult J (1962) Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin u.a

    Google Scholar 

  • Ogden R (1997) Non-linear elastic deformations. Dover Publications, Dover Civil and Mechanical Engineering

    Google Scholar 

  • Ogden RW (2015) Nonlinear elasticity with application to soft fibre-reinforced materials. In: Dorfmann L, Ogden RW (eds) Nonlinear mechanics of soft fibrous materials, cism international centre for mechanical sciences, vol 559, Springer, pp 1–48

    Google Scholar 

  • Ohno N (1990) Recent topics in constitutive modelling of cyclic plasticity and viscoplasticity. Appl Mech Rev 43:283–295

    Article  Google Scholar 

  • Ohno N, Kawabata M, Naganuma J (1990) Aging effects on monotonic, stress-paused, and alternating creep of type 304 stainless steel. Int J Plast 6:315–327

    Article  Google Scholar 

  • Onat ET, Leckie FA (1988) Representation of mechanical behavior in the presence of changing internal structure. J Appl Mech 55:1–10

    Article  Google Scholar 

  • Othman AM, Hayhurst DR, Dyson BF (1993) Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically-based constitutive equations. Proc R Soc London A: Math Phys Eng Sci A441:343–358

    Article  Google Scholar 

  • Othman AM, Dyson BF, Hayhurst DR, Lin J (1994) Continuum damage mechanics modelling of circumferentially notched tension bars undergoing tertiary creep with physically-based constitutive equations. Acta Metall Mater 42(3):597–611

    Article  Google Scholar 

  • Oytana C, Delobelle P, Mermet A (1982) Constitutive equations study in biaxial stress experimants. J Eng Mater Technol 104(3):1–11

    Article  Google Scholar 

  • Ozhoga-Maslovskaja O (2014) Micro scale modeling grain boundary damage under creep conditions. PhD thesis, Otto von Guericke University Magdeburg, Magdeburg

    Google Scholar 

  • Ozhoga-Maslovskaja O, Naumenko K, Altenbach H, Prygorniev O (2015) Micromechanical simulation of grain boundary cavitation in copper considering non-proportional loading. Comput Mater Sci 96, Part A:178–184

    Google Scholar 

  • Palmov V (1998) Vibrations in elasto-plastic bodies. Springer, Berlin

    Book  MATH  Google Scholar 

  • Penkalla HJ, Schubert F, Nickel H (1988) Torsional creep of alloy 617 tubes at elevated temperature. In: Reichman S, Duhl DN, Maurer G, Antolovich S, Lund C (eds) Superalloys 1988. The Metallurgical Society, pp 643–652

    Google Scholar 

  • Penny RK, Mariott DL (1995) Design for creep. Chapman & Hall, London

    Book  Google Scholar 

  • Perrin IJ, Hayhurst DR (1994) Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steel in the temperature range 600–675\(^\circ \)C. J Strain Anal Eng Des 31(4):299–314

    Article  Google Scholar 

  • Perrin IJ, Hayhurst DR (1999) Continuum damage mechanics analyses of type IV creep failure in ferritic steel crossweld specimens. Int J Press Vessels Pip 76:599–617

    Article  Google Scholar 

  • Polcik P (1999) Modellierung des Verformungsverhaltens der warmfesten 9–12% Chromstähle im Temperaturbereich von 550–560\(^{\circ }\) C. Dissertation, Universität Erlangen-Nürnberg, Shaker Verlag Aachen

    Google Scholar 

  • Polcik P, Straub S, Henes D, Blum W (1998) Simulation of the creep behaviour of 9–12% CrMo-V steels on the basis of microstructural data. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability of creep resistant alloys for high temperature plant applications. Cambridge University Press, Cambridge, pp 405–429

    Google Scholar 

  • Powell PC (1994) Engineering with fiber-reinforced laminates. Chapman & Hall, London

    Book  Google Scholar 

  • Prager W (1956) A new method of analyzing stresses and strains in work-hardening plastic solids. J Appl Mech 23(4):493–496

    MathSciNet  MATH  Google Scholar 

  • Qi W (1998) Modellierung der Kriechschädigung einkristalliner Superlegierungen im Hochtemperaturbereich, Fortschrittberichte VDI, Reihe 18, Nr. 230. VDI Verlag, Düsseldorf

    Google Scholar 

  • Qi W, Bertram A (1997) Anisotropic creep damage modelling of single crystal superalloys. Technische Mechanik 17(4):313–322

    Google Scholar 

  • Qi W, Bertram A (1998) Damage modeling of the single crystal superalloy srr99 under monotonous creep. Comput Mater Sci 13:132–141

    Article  Google Scholar 

  • Qi W, Bertram A (1999) Anisotropic continuum damage modeling for single crystals at high temperatures. Int J Plast 15:1197–1215

    Article  MATH  Google Scholar 

  • Rabotnov YN (1963) O razrushenii vsledstvie polzuchesti (On fracture as a consequence of creep, in Russ.). Prikladnaya mekhanika i tekhnicheskaya fizika 2:113–123

    Google Scholar 

  • Rabotnov YN (1967) Vliyanie kontsentratsii napryazhenij na dlitel’nuyu prochnost’ (Influence of stress concentration on the long-term strength, in Russ.). Prikladnaya mekhanika i tekhnicheskaya fizika 3:36–41

    Google Scholar 

  • Rabotnov YN (1969) Creep problems in structural members. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Rabotnov YN (1979) Mekhanika deformiruemogo tverdogo tela (Mechanics of the deformable solid, in Russ.). Nauka, Moskva

    Google Scholar 

  • Reiner M (1969) Deformation and flow. An elementary introduction to rheology, 3rd edn. H.K. Lewis & Co., London

    Google Scholar 

  • Riedel H (1987) Fracture at high temperatures. In: Materials research and engineering. Springer, Berlin

    Google Scholar 

  • Rivlin R, Erickson J (1955) Stress-deformation-relations for isotropic material. J Ration Mech Anal 4:323–425

    MATH  Google Scholar 

  • Robinson DN (1984) Constitutive relationships for anisotropic high-temperature alloys. Nucl Eng Des 83:389–396

    Article  Google Scholar 

  • Robinson DN, Binienda WK, Ruggles MB (2003a) Creep of polymer matrix composites. I: Norton/Bailey creep law for transverse isotropy. J Eng Mech 129(3):310–317

    Article  Google Scholar 

  • Robinson DN, Binienda WK, Ruggles MB (2003b) Creep of polymer matrix composites. II: Monkman-Grant failure relationship for transverse isotropy. J Eng Mech 129(3):318–323

    Article  Google Scholar 

  • Rodin GJ, Parks DM (1986) Constitutive models of a power-law matrix containing aligned penny-shaped cracks. Mech Mater 5:221–228

    Article  Google Scholar 

  • Rodin GJ, Parks DM (1988) A self-consistent analysis of a creeping matrix with aligned cracks. J Mech Phys Solids 36:237–249

    Article  MATH  Google Scholar 

  • Rogers TG (1990) Yield criteria, flow rules and hardening in anisotropic plasticity. In: Boehler JP (ed) Yielding, damage and failure of anisotropic solids. Mechanical Engineering Publ, London, pp 53–79

    Google Scholar 

  • Saanouni K, Chaboche JL, Lense PM (1989) On the creep crack-growth prediction by a non-local damage formulation. Eur J Mech A Solids 8(6):437–459

    MATH  Google Scholar 

  • Sakane M, Hosokawa T (2001) Biaxial and triaxial creep testing of type 304 stainless steel at 923 k. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 411–418

    Google Scholar 

  • Sakane M, Tokura H (2002) Experimental study of biaxial creep damage for type 304 stainless steel. Int J Damage Mech 11:247–262

    Article  Google Scholar 

  • Schiesse P (1994) Ein Beitrag zur Berechnung des Deformationsverhaltens anisotrop gescheädigter Kontinua unter Berücksichtigung der thermoplastischer Kopplung. Dissertation, Ruhr-Universität Bochum, Mitteilungen aus dem Institut für Mechanik 89

    Google Scholar 

  • Schmicker D, Naumenko K, Strackeljan J (2013) A robust simulation of direct drive friction welding with a modified Carreau fluid constitutive model. Comput Methods Appl Mech Eng 265:186–194

    Article  MathSciNet  MATH  Google Scholar 

  • Schmicker D, Paczulla S, Nitzschke S, Groschopp S, Naumenko K, Jüttner S, Strackeljan J (2015) Experimental identification of flow properties of a S355 structural steel for hot deformation processes. J Strain Anal Eng Des 50(2):75–83

    Article  Google Scholar 

  • Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401–445

    Article  MathSciNet  MATH  Google Scholar 

  • Sdobyrev VP (1959) Kriterij dlitel’noj prochnosti dlya nekotorykh zharoprochnykh splavov pri slozhnom napryazhennom sostoyanii, (Criterion of long term strength of some high-temperature alloys under multiaxial stress state, in Russ.). Izv AN SSSR OTN Mekh i Mashinostroenie 6:93–99

    Google Scholar 

  • Skrzypek J, Ganczarski A (1998) Modelling of material damage and failure of structures. In: Foundation of engineering mechanics. Springer, Berlin

    Google Scholar 

  • Skrzypek JJ (1993) Plasticity and creep. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Soločevskij A, Konkin V, Moračkowskij O, Koczyk S (1985) Eine Theorie zur nichtlinearen Verformung anisotroper Körper und ihre Anwendung auf die Berechnung des Kriechverhaltens dünner Schalen. Technische Mechanik 6(4):27–36

    Google Scholar 

  • Sosnin OV (1971) K voprosu o suschestvovanii potentsiala polzuchseti, (On the question on existense of creep potential, in Russ.). Izv AN SSSR Mekhanika tverdogo tela 5:85–89

    Google Scholar 

  • Sosnin OV (1974) Energeticheskii variant teorii polzuchesti i dlitel’noi prochnosti. Polzuchest’ i razrushenie neuprochnyayushikhsya materialov (Energetic variant of the creep and long—term strength theories. Creep and fracture of nonhardening materials, in Russ.). Problemy prochnosti 5:45–49

    Google Scholar 

  • Sosnin OV, Gorev BV, Nikitenko AF (1986) Energeticheskii variant teorii polzuchesti (Energetic variant of the creep theory, in Russ.). Institut Gidrodinamiki, Novosibirsk

    Google Scholar 

  • Spencer AJM (1984) Linear elastic constitutive equations for fibre-reinforced material. In: Spencer AJM (ed) Continuum theory of the mechanics of fibre-reinforced composites. Springer-Verlag, Wien, pp 1–32, CISM Lecture Notes No. 282

    Google Scholar 

  • Spencer AJM (1987) Isotropic polynomial invariants and tensor functions. In: Boehler J (ed) Applications of tensor functions in solid mechanics. Springer, Wien, pp 141–169, CISM Lecture Notes No. 292

    Google Scholar 

  • Stamm H, von Estroff U (1993) Determination of damage parameters for microckrack formation under creep conditions. In: Ainsworth RA, Skelton RP (eds) Behaviour of defects at high temperatures. Mechanical Engineering Publ, London, pp 123–151

    Google Scholar 

  • Stouffer DC, Dame LT (1996) Inelastic deformation of metals. Wiley, New York

    Google Scholar 

  • Straub S (1995) Verformungsverhalten und Mikrostruktur warmfester martensitischer 12%-Chromstähle. Dissertation, Universität Erlangen-Nürnberg, VDI Reihe 5, Nr. 405, Düsseldorf

    Google Scholar 

  • Tamuzh VP, Kuksenko VS (1978) Mikromeckanika razrusheniya polimernykh materialov (Micromechanics of fracture of polymeric materials, in Russ.). Zinatne, Riga

    Google Scholar 

  • Timoshenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  • Ting TCT (1996) Anisotropic elasticity. In: Theory and applications. Oxford University Press, Oxford

    Google Scholar 

  • Truesdell C (1964) Second-order effects in the mechanics of materials. In: Reiner M, Abir D (eds) Second-order effects in elasticity, plasticity and fluid dynamics. Pergamon Press, Oxford, pp 228–251

    Google Scholar 

  • Truesdell C, Noll W (1992) The non-linear field theories of mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Trunin II (1965) Kriterii prochnosti v usloviyakh polzuchesti pri slozhnom napryazhennom sostoyanii (Failure criteria under creep conditions in multiaxial stress state, in Russ.). Prikl Mekhanika 1(7):77–83

    Google Scholar 

  • Vakulenko AA, Kachanov ML (1971) Kontinual’naya teoria sredy s treshchinami (Continuum theory of a medium with cracks, in Russ.). Izv AN SSSR Mekhanika tverdogo tela 4:159–166

    Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (2006) Elastoplasticity beyond small deformations. Acta Mech 182(1–2):31–111

    Article  MATH  Google Scholar 

  • Zheng QS, Boehler JP (1994) The description, classification and reality of material and physical symmetries. Acta Mech 102:73–89

    Article  MathSciNet  MATH  Google Scholar 

  • Zhilin PA (1982) Osnovnye uravneniya neklassicheskoi teorii obolochek (basic equations of a non-classical theory of shells, in russ.). Dinamika i prochnost’ mashin, Trudy LPI 386:29–46

    Google Scholar 

  • Zhilin PA (1996) A new approach to the analysis of free rotations of rigid bodies. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 76(4):187–204

    Article  MathSciNet  MATH  Google Scholar 

  • Zhilin PA (2003) Modifizirovannaya teoriya simmetrii tenzorov i tenzornykh invariantov (A modified theory of symmetry for tensors and tensor invariants, in Russ.). Izvestiya vuzov Estestvennye Nauki pp 176–195

    Google Scholar 

  • Ziegler H (1963) Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In: Sneddon IN, Hill R (eds) Progress in solid mechanics. North-Holland, Amsterdam, pp 93–192

    Google Scholar 

  • Ziegler H (1983) An introduction to thermomechanics. In: North-Holland Series in Applied Mathematics and Mechanics, vol 21. North-Holland, Amsterdam

    Google Scholar 

  • Zyczkowski M (2000) Creep damage evolution equations expressed in terms of dissipated power. Int J Mech Sci 42:755–769

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Naumenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Naumenko, K., Altenbach, H. (2016). Constitutive Models. In: Modeling High Temperature Materials Behavior for Structural Analysis. Advanced Structured Materials, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-31629-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31629-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31627-7

  • Online ISBN: 978-3-319-31629-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics