Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 28))

  • 1485 Accesses

Abstract

The objective of continuum mechanics is to develop mathematical models to analyze the behavior of idealized three-dimensional bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In many cases strains can be infinitesimal, but rotations finite. One example is a thin plate strip which can be bent into a ring such that the strains remain infinitesimal but cross section rotations are large.

  2. 2.

    The tensor \(\pmb D\) is in general not a time derivative of a strain tensor.

  3. 3.

    This can be verified applying the integral theorem (B.3.4)\(_1\) with \(\varphi =1\).

  4. 4.

    In some books of continuum mechanics and applied mathematics the stress tensor is defined as \({\large \pmb \sigma } =\pmb \sigma _{(\pmb e_1)}\otimes \pmb e_1+\pmb \sigma _{(\pmb e_2)}\otimes \pmb e_2+\pmb \sigma _{(\pmb e_3)}\otimes \pmb e_3\) such that the Cauchy formula is \(\pmb \sigma _{(\pmb n)}= {\large \pmb \sigma }\pmb {\cdot }\pmb n\). Formally this definition differs from (4.3.89) by transpose. It might be more convenient, as it is closer to the matrix algebra. For engineers dealing with internal forces it is more natural to use (4.3.89). Indeed, to analyze a stress state we need to cut the body first and to specify the normal to the cut plane. Only after that we can introduce the internal force. The sequence of these operations is clearly seen in (4.3.89).

  5. 5.

    With regard to structural analysis applications discussed in this book it is enough to identify the angular momentum as the moment of momentum and the resultant moment as the moment of forces. In contrast, within the micropolar theories material points are equipped by tensor of inertia. The resultant moment includes surface and body moments which are not related to moment of forces, e.g. Altenbach et al. (2003), Eringen (1999), Nowacki (1986).

References

  • Altenbach H (2015) Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen. Springer

    Google Scholar 

  • Altenbach H, Eremeyev V (2012) Generalized Continua - from the Theory to Engineering Applications. Springer, CISM International Centre for Mechanical Sciences

    Google Scholar 

  • Altenbach H, Eremeyev V (2014) Strain rate tensors and constitutive equations of inelastic micropolar materials. Int J Plast 63:3–17

    Article  Google Scholar 

  • Altenbach H, Naumenko K, Zhilin PA (2003) A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mech Thermodyn 15:539–570

    Google Scholar 

  • Altenbach H, Naumenko K, Pylypenko S, Renner B (2007) Influence of rotary inertia on the fiber dynamics in homogeneous creeping flows. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 87(2):81–93

    Article  MathSciNet  MATH  Google Scholar 

  • Altenbach H, Brigadnov I, Naumenko K (2009) Rotation of a slender particle in a shear flow: influence of the rotary inertia and stability analysis. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 89(10):823–832

    Article  MATH  Google Scholar 

  • Bertram A (2012) Elasticity and plasticity of large deformations, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Eglit M, Hodges D (1996) Continuum mechanics via problems and exercises: theory and problems. World Scientific

    Google Scholar 

  • Eremeyev VA, Lebedev LP, Altenbach H (2012) Foundations of micropolar mechanics. Springer Science & Business Media

    Google Scholar 

  • Eringen AC (1999) Microcontinuum field theories, vol. I. In: Foundations and solids. Springer, New York

    Google Scholar 

  • Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 33. Academic Press, New York, pp 295–361

    Google Scholar 

  • Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135(3):117–131

    Article  Google Scholar 

  • Forest S, Cailletaud G, Sievert R (1997) A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch Mech 49:705–736

    MathSciNet  MATH  Google Scholar 

  • Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity - I. Theory. J Mech Phys Solids 47(6):1239–1263

    Article  MathSciNet  MATH  Google Scholar 

  • Haupt P (2002) Continuum mechanics and theory of materials. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lai WM, Rubin D, Krempl E (1993) Introduction to continuum mechanics. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Maugin G (2013) Continuum mechanics through the twentieth century: a concise historical perspective. In: Solid mechanics and its applications. Springer

    Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Meth Appl Mech Eng 199(45–48):2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  • Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-Mg-Si alloy. Mater Sci Eng: A 618:368–376

    Article  Google Scholar 

  • Naumenko K, Altenbach H, Kutschke A (2011) A combined model for hardening, softening and damage processes in advanced heat resistant steels at elevated temperature. Int J Damage Mech 20:578–597

    Article  Google Scholar 

  • Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Schmitt R, Müller R, Kuhn C, Urbassek H (2013) A phase field approach for multivariant martensitic transformations of stable and metastable phases. Arch Appl Mech 83:849–859

    Article  MATH  Google Scholar 

  • Smith DR (1993) An introduction to continuum mechanics. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Truesdell C, Noll W (1992) The non-linear field theories of mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1997) Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica 124(1–4):89–105

    Google Scholar 

  • Zhilin PA (1996) A new approach to the analysis of free rotations of rigid bodies. ZAMM-J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 76(4):187–204

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Naumenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Naumenko, K., Altenbach, H. (2016). Three-Dimensional Continuum Mechanics. In: Modeling High Temperature Materials Behavior for Structural Analysis. Advanced Structured Materials, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-31629-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31629-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31627-7

  • Online ISBN: 978-3-319-31629-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics