Skip to main content

Amyloid Imaging in Dementia and Related Disorders

  • Chapter
  • First Online:
  • 1941 Accesses

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia. Clinical diagnosis alone has only moderate accuracy and requires the presence of dementia. Amyloid-β (Aβ) imaging provides information and allows earlier diagnosis of AD and better differential diagnosis of dementia in vivo, showing significantly higher cortical Aβ burden in AD patients compared with healthy control or patients with frontotemporal dementia, and identifies patients with mild cognitive impairment (MCI) at risk of conversion to AD. Aβ imaging has a great potential to serve as a biomarker supporting clinical AD diagnosis and is contributing to the development of more effective therapies in clinical trials for AD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rowe CC, Villemagne VL (2013) Brain amyloid imaging. J Nucl Med Technol 41(1):11–18

    Article  PubMed  Google Scholar 

  2. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944

    Article  CAS  PubMed  Google Scholar 

  3. Villemagne VL, Ng S, Cappai R, Barnham KJ, Fodero-Tavoletti MT, Rowe CC et al (2006) La lunga attesa: towards a molecular approach to neuroimaging and therapeutics in Alzheimer’s disease. Neuroradiol J 19(4):453–474

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18(4):351–357

    Article  CAS  PubMed  Google Scholar 

  5. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masters CL, Cappai R, Barnham KJ, Villemagne VL (2006) Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J Neurochem 97(6):1700–1725

    Article  CAS  PubMed  Google Scholar 

  7. Golde TE, Dickson D, Hutton M (2006) Filling the gaps in the abeta cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 3(5):421–430

    Article  CAS  PubMed  Google Scholar 

  8. Minati L, Edginton T, Bruzzone MG, Giaccone G (2009) Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Demen 24(2):95–121

    Article  PubMed  Google Scholar 

  9. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13(June):614–629

    Article  PubMed  Google Scholar 

  10. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  11. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319

    Article  CAS  PubMed  Google Scholar 

  12. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131(Pt 6):1630–1645

    Article  PubMed  PubMed Central  Google Scholar 

  13. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA et al (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305(3):275–283

    Article  CAS  PubMed  Google Scholar 

  14. Koole M, Lewis DM, Buckley C, Nelissen N, Vandenbulcke M, Brooks DJ et al (2009) Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med 50(5):818–822

    Article  CAS  PubMed  Google Scholar 

  15. Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G et al (2011) Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 52(8):1210–1217

    Article  PubMed  Google Scholar 

  16. Juréus A, Swahn B-M, Sandell J, Jeppsson F, Johnson AE, Johnström P et al (2010) Characterization of AZD4694, a novel fluorinated Abeta plaque neuroimaging PET radioligand. J Neurochem 114(3):784–794

    Article  PubMed  Google Scholar 

  17. Arbizu J, Garcia-Ribas G, Carrió I (2015) Recommendations for the use of PET imaging biomarkers in the diagnostic of neurodegenerative conditions associated with dementia: SEMNIM and SEN consensus. Rev Esp Med Nucl Imagen Mol 34(5):303–313

    PubMed  Google Scholar 

  18. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  19. Ng S, Villemagne VL, Berlangieri S, Lee S-T, Cherk M, Gong SJ et al (2007) Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med 48(4):547–552

    Article  CAS  PubMed  Google Scholar 

  20. Barthel H, Gertz H-J, Dresel S, Peters O, Bartenstein P, Buerger K et al (2011) Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10(5):424–435

    Article  CAS  PubMed  Google Scholar 

  21. Chiotis K, Carter SF, Farid K, Savitcheva I, Nordberg A (2015) Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging. Eur J Nucl Med Mol Imaging 42(10):1492–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fodero-Tavoletti MT, Cappai R, McLean CA, Pike KE, Adlard PA, Cowie T et al (2009) Amyloid imaging in Alzheimer’s disease and other dementias. Brain Imaging Behav 3(3):246–261

    Article  PubMed  Google Scholar 

  23. Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK et al (2007) Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 27(23):6174–6184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rabinovici G, Jagust W (2009) Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo. Behav Neurol 21(1):117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Furst AJ, Rabinovici GD, Rostomian AH, Steed T, Alkalay A, Racine C et al (2012) Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging 33(2):215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I et al (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11):2856–2866

    Article  PubMed  Google Scholar 

  27. Guillozet al, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60(5):729–736

    Google Scholar 

  28. Jack CR, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS et al (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5):1355–1365

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 106(16):6820–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FRJ et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313(19):1924–1938

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH et al (2006) [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67(3):446–452

    Article  CAS  PubMed  Google Scholar 

  32. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O et al (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367, Elsevier Ltd

    Article  CAS  PubMed  Google Scholar 

  33. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kemppainen NM, Aalto S, Wilson IA, Någren K, Helin S, Brück A et al (2007) PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 68(19):1603–1606

    Article  CAS  PubMed  Google Scholar 

  35. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A et al (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29(10):1456–1465

    Article  CAS  PubMed  Google Scholar 

  36. Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Någren K et al (2009) Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 73(10):754–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doraiswamy PM, Sperling RA, Johnson K, Reiman EM, Wong TZ, Sabbagh MN et al (2014) Florbetapir F 18 amyloid PET and 36-month cognitive decline:a prospective multicenter study. Mol Psychiatry 19(9):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ong K, Villemagne VL, Bahar-Fuchs A, Lamb F, Chételat G, Raniga P et al (2013) (18)F-florbetaben Aβ imaging in mild cognitive impairment. Alzheimers Res Ther 5(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Snider BJ, Fagan AM, Roe C, Shah AR, Grant EA, Xiong C et al (2009) Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type. Arch Neurol 66(5):638–645

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fagan AM, Shaw LM, Xiong C, Vanderstichele H, Mintun MA, Trojanowski JQ et al (2011) Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch Neurol 68(9):1137–1144

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta;42 in humans. Ann Neurol 59(3):512–519

    Article  CAS  PubMed  Google Scholar 

  42. Jagust WJ, Landau SM, Shaw LM, Trojanowski JQ, Koeppe RA, Reiman EM et al (2009) Relationships between biomarkers in aging and dementia. Neurology 73(15):1193–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mattsson N, Insel PS, Landau S, Jagust W, Donohue M, Shaw LM et al (2014) Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer’s disease. Ann Clin Transl Neurol 1(8):534–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA, Trojanowski JQ et al (2013) Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β-amyloid. Ann Neurol 74(6):826–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32(4):486–510

    Article  CAS  PubMed  Google Scholar 

  46. Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM (2002) Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry 159(5):738–745

    Article  PubMed  Google Scholar 

  47. Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S, de Leon MJ (2010) Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis 20(3):843–854

    PubMed  PubMed Central  Google Scholar 

  48. Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N et al (2011) Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77(23):2034–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Silverman D (2003) Prognostic value of regional cerebral metabolism in patients undergoing dementia evaluation: comparison to a quantifying parameter of subsequent cognitive performance and to prognostic assessment without PET. Mol Genet Metab 80(3):350–355

    Article  CAS  PubMed  Google Scholar 

  50. Bohnen NI, Djang DSW, Herholz K, Anzai Y, Minoshima S (2012) Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53(1):59–71

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S et al (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kemppainen N, Joutsa J, Johansson J, Scheinin NM, Någren K, Rokka J et al (2015) Long-term interrelationship between brain metabolism and amyloid deposition in mild cognitive impairment. Barthel H, editor. J Alzheimers Dis 48(1):123–133

    Article  PubMed  Google Scholar 

  53. Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6(4):347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barkhof F, Polvikoski TM, van Straaten ECW, Kalaria RN, Sulkava R, Aronen HJ et al (2007) The significance of medial temporal lobe atrophy: a postmortem MRI study in the very old. Neurology 69(15):1521–1527

    Article  CAS  PubMed  Google Scholar 

  55. Lo RY, Hubbard AE, Shaw LM, Trojanowski JQ, Petersen RC, Aisen PS et al (2011) Longitudinal change of biomarkers in cognitive decline. Arch Neurol 68(10):1257–1266

    Article  PubMed  Google Scholar 

  56. Heston LL (1984) Down’s syndrome and Alzheimer’s dementia: defining an association. Psychiatr Dev 2(4):287–294

    CAS  PubMed  Google Scholar 

  57. Visser FE, Aldenkamp AP, van Huffelen AC, Kuilman M, Overweg J, van Wijk J (1997) Prospective study of the prevalence of Alzheimer-type dementia in institutionalized individuals with Down syndrome. Am J Ment Retard 101(4):400–412

    CAS  PubMed  Google Scholar 

  58. Handen BL, Cohen AD, Channamalappa U, Bulova P, Cannon SA, Cohen WI et al (2012) Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. Alzheimers Dement 8(6):496–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jennings D, Seibyl J, Sabbagh M, Lai F, Hopkins W, Bullich S et al (2015) Age dependence of brain β-amyloid deposition in Down syndrome: an [18F]florbetaben PET study. Neurology 84(5):500–507

    Article  CAS  PubMed  Google Scholar 

  60. Annus T, Wilson LR, Hong YT, Acosta-Cabronero J, Fryer TD, Cardenas-Blanco A et al (2015) The pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimers Dement. Elsevier. In Press. doi: 10.1016/j.jalz.2015.07.490

    Google Scholar 

  61. Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18(2):311–324

    Article  CAS  PubMed  Google Scholar 

  62. Charidimou A, Gang Q, Werring DJ (2012) Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry 83(2):124–137

    Article  PubMed  Google Scholar 

  63. Yamada M, Tsukagoshi H, Otomo E, Hayakawa M (1987) Cerebral amyloid angiopathy in the aged. J Neurol 234(6):371–376

    Article  CAS  PubMed  Google Scholar 

  64. Ly JV, Donnan GA, Villemagne VL, Zavala JA, Ma H, O’Keefe G et al (2010) 11C-PIB binding is increased in patients with cerebral amyloid angiopathy-related hemorrhage. Neurology 74(6):487–493

    Article  CAS  PubMed  Google Scholar 

  65. Baron J-C, Farid K, Dolan E, Turc G, Marrapu ST, O’Brien E et al (2014) Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab 34(5):753–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gurol ME, Dierksen G, Betensky R, Gidicsin C, Halpin A, Becker A et al (2012) Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy. Neurology 79(4):320–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lippa CF, Duda JE, Grossman M, Hurtig HI, Aarsland D, Boeve BF et al (2007) DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 68(11):812–819

    Article  CAS  PubMed  Google Scholar 

  68. Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BNM et al (2015) Prevalence of amyloid PET positivity in dementia syndromes. JAMA 313(19):1939

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gomperts SN, Locascio JJ, Marquie M, Santarlasci AL, Rentz DM, Maye J et al (2012) Brain amyloid and cognition in Lewy body diseases. Mov Disord 27(8):965–973

    Article  PubMed  PubMed Central  Google Scholar 

  70. Foster ER, Campbell MC, Burack MA, Hartlein J, Flores HP, Cairns NJ et al (2010) Amyloid imaging of Lewy body-associated disorders. Mov Disord 25(15):2516–2523

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58(11):1615–1621

    Article  CAS  PubMed  Google Scholar 

  72. Varma AR, Snowden JS, Lloyd JJ, Talbot PR, Mann DM, Neary D (1999) Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 66(2):184–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11(5):361–370

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D et al (2000) Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55(8):1158–1166

    Article  CAS  PubMed  Google Scholar 

  75. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57(4):419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kawai N, Kawanishi M, Kudomi N, Maeda Y, Yamamoto Y, Nishiyama Y et al (2013) Detection of brain amyloid β deposition in patients with neuropsychological impairment after traumatic brain injury: PET evaluation using Pittsburgh Compound-B. Brain Inj 27(9):1026–1031

    Article  PubMed  Google Scholar 

  77. Hong YT, Veenith T, Dewar D, Outtrim JG, Mani V, Williams C et al (2014) Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol 71(1):23–31

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fodero-Tavoletti MT, Furumoto S, Taylor L, McLean CA, Mulligan RS, Birchall I et al (2014) Assessing THK523 selectivity for tau deposits in Alzheimer’s disease and non-Alzheimer’s disease tauopathies. Alzheimers Res Ther 6(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  79. Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC (2015) Tau imaging: early progress and future directions. Lancet Neurol 14(1):114–124

    Article  PubMed  Google Scholar 

  80. Okamura N, Harada R, Furumoto S, Arai H, Yanai K, Kudo Y (2014) Tau PET imaging in Alzheimer’s disease. Curr Neurol Neurosci Rep 14(11):500

    Article  PubMed  Google Scholar 

  81. Kadir A, Andreasen N, Almkvist O, Wall A, Forsberg A, Engler H et al (2008) Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. Ann Neurol 63(5):621–631

    Article  CAS  PubMed  Google Scholar 

  82. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321

    Article  CAS  PubMed  Google Scholar 

  83. Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ et al (2012) Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 69(2):198–207

    Article  PubMed  Google Scholar 

  84. Salloway S, Sperling R, Brashear HR (2014) Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease. N Engl J Med 370(15):1460

    CAS  PubMed  Google Scholar 

  85. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE et al (2010) 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9(4):363–372

    Article  CAS  PubMed  Google Scholar 

  86. Aisen PS (2009) Alzheimer’s disease therapeutic research: the path forward. Alzheimers Res Ther 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Camacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Camacho, V., Carrió, I. (2016). Amyloid Imaging in Dementia and Related Disorders. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics