Skip to main content

FDG-PET in Dementia

  • Chapter
  • First Online:
PET-CT and PET-MRI in Neurology

Abstract

This chapter is aimed to describe the pathology of dementia in terms of histology and related imaging findings. Moreover, attention is focused also in benefits of hybrid imaging and computer-aided diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer Europe (2010) Dementia: definition [Web site]. Available at: http://www.alzheimer-europe.org/EN/Glossary/dementia. Accessed 21 Jan 2011

  2. Krishnan LL, Petersen NJ, Snow AL, Cully JA, Schulz PE, Graham DP et al (2005) Prevalence of dementia among Veterans Affairs medical care system users. Dement Geriatr Cogn Disord 20(4):245–253

    Article  PubMed  Google Scholar 

  3. Love S (2005) Neuropathological investigation of dementia: a guide for neurologists. J Neurol Neurosurg Psychiatry 76(Suppl V):v8–v14

    Article  PubMed  PubMed Central  Google Scholar 

  4. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132(Pt 11):2922–2931

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dickson DW (2005) Required techniques and useful molecular markers in the neuropathologic diagnosis of neurodegenerative diseases. Acta Neuropathol 109(1):14–24

    Article  PubMed  Google Scholar 

  6. Kovacs GG, Budka H (2010) Current concepts of neuropathological diagnostics in practice: neurodegenerative diseases. Clin Neuropathol 29(5):271–288

    Article  CAS  PubMed  Google Scholar 

  7. Lowe J, Mirra SS, Hyman BT, Dickson DW (2008) Ageing and dementia. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology, 8th edn. Hodder Arnold, London, pp 1031–1152

    Google Scholar 

  8. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alafuzoff I, Arzberger T, Al-Sarraj S, Bodi I, Bogdanovic N, Braak H et al (2008) Staging of neurofibrillary pathology in Alzheimer’s disease: a study of the BrainNet Europe Consortium. Brain Pathol 18(4):484–496

    PubMed  PubMed Central  Google Scholar 

  10. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486

    Article  CAS  PubMed  Google Scholar 

  11. National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol Aging (Suppl) 18(4):1–2

    Google Scholar 

  12. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, for the Consortium on DLB (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65(12):1863–1872

    Article  CAS  PubMed  Google Scholar 

  13. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  14. Gallucci M et al (2008) Neurodegenerative diseases. Radiol Clin North Am 46(4):799–817

    Article  PubMed  Google Scholar 

  15. Coleman RE (2007) Positron emission tomography diagnosis of Alzheimer’s disease. PET Clin 2(1):25–34

    Article  PubMed  Google Scholar 

  16. Silverman DHS, Alavi A (2005) PET imaging in the assessment of normal and impaired cognitive function. Radiol Clin North Am 43(1):67–77

    Article  PubMed  Google Scholar 

  17. Van Heertum RL, Tikofsky RS (2003) Positron emission tomography and single-photon emission computed tomography brain imaging in the evaluation of dementia. Semin Nucl Med 33(1):77–85, WB Saunders

    Article  PubMed  Google Scholar 

  18. Herholz K, Carter SF, Jones M (2014) Positron emission tomography imaging in dementia. Br J Radiol 80(2):S160–S167

    Google Scholar 

  19. Ishii K (2002) Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 16(8):515–525

    Article  PubMed  Google Scholar 

  20. Ishii K (2014) PET approaches for diagnosis of dementia. AJNR Am J Neuroradiol 35(11):2030–2038

    Article  CAS  PubMed  Google Scholar 

  21. Del Sole A et al (2008) Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study. Eur J Nucl Med Mol Imaging 35(7):1357–1366

    Article  PubMed  Google Scholar 

  22. Mosconi L et al (2008) Multicenter standardized 18 F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49(3):390–398

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yuan Y, Gu Z-X, Wei W-S (2009) Fluorodeoxyglucose–positron-emission tomography, single-photon emission tomography, and structural mr imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol 30(2):404–410

    Article  CAS  PubMed  Google Scholar 

  24. Chételat G et al (2008) Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain 131(1):60–71

    Article  PubMed  Google Scholar 

  25. Minoshima S et al (1999) Discordance between traditional pathologic and energy metabolic changes in very early Alzheimer’s disease: pathophysiological implications. Ann N Y Acad Sci 893(1):350–352

    Article  CAS  PubMed  Google Scholar 

  26. McKhann GM et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  27. Albert MS et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279

    Article  PubMed  PubMed Central  Google Scholar 

  28. Minoshima S et al (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42(1):85–94

    Article  CAS  PubMed  Google Scholar 

  29. Choo ILH et al (2007) Topographic patterns of brain functional impairment progression according to clinical severity staging in 116 Alzheimer disease patients: FDG-PET study. Alzheimer Dis Assoc Disord 21(2):77–84

    Article  PubMed  Google Scholar 

  30. Hirono N et al (2004) One-year change in cerebral glucose metabolism in patients with Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 16(4):488–492

    Article  CAS  PubMed  Google Scholar 

  31. Jagust WMRB et al (2007) What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 69(9):871–877

    Article  CAS  PubMed  Google Scholar 

  32. Langbaum JBS et al (2009) Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage 45(4):1107–1116

    Article  PubMed  PubMed Central  Google Scholar 

  33. McMurtray AM et al (2008) Positron emission tomography facilitates diagnosis of early-onset alzheimer’s disease. Eur Neurol 59(1–2):31–37

    Google Scholar 

  34. Ishii K et al (2006) Fully automatic diagnostic system for early-and late-onset mild Alzheimer’s disease using FDG PET and 3D-SSP. Eur J Nucl Med Mol Imaging 33(5):575–583

    Article  PubMed  Google Scholar 

  35. Patterson JC et al (2009) Potential value of quantitative analysis of cerebral PET in early cognitive decline. Am J Alzheimers Dis Other Dement 23(6):586–592

    Article  Google Scholar 

  36. Ishii K et al (1998) Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease. Dement Geriatr Cogn Disord 9(6):317–322

    Article  CAS  PubMed  Google Scholar 

  37. Phelps ME (2004) PET: molecular imaging and its biological applications. Springer Science & Business Media, New York

    Book  Google Scholar 

  38. Alexander GE et al (1997) Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: implications for the cognitive reserve hypothesis. Am J Psychiatry 154(2):165–172

    Article  CAS  PubMed  Google Scholar 

  39. McKhann G et al (1984) Clinical diagnosis of Alzheimer’s disease Report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939

    Article  CAS  PubMed  Google Scholar 

  40. Hirono N et al (2002) The effect of APOE ε4 allele on cerebral glucose metabolism in AD is a function of age at onset. Neurology 58(5):743–750

    Article  CAS  PubMed  Google Scholar 

  41. Colloby S, O’Brien J (2004) Functional imaging in Parkinson’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 17(3):158–163

    Article  PubMed  Google Scholar 

  42. Higuchi M et al (2000) Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol 162(2):247–256

    Article  CAS  PubMed  Google Scholar 

  43. Ishii K et al (2004) Comparison of FDG-PET and IMP-SPECT in patients with dementia with Lewy bodies. Ann Nucl Med 18(5):447–451

    Article  PubMed  Google Scholar 

  44. Cordery RJ et al (2001) Dementia with Lewy bodies studied with positron emission tomography. Arch Neurol 58(3):505–508

    Article  CAS  PubMed  Google Scholar 

  45. Imamura T et al (2001) Occipital glucose metabolism in dementia with Lewy bodies with and without Parkinsonism: a study using positron emission tomography. Dement Geriatr Cogn Disord 12(3):194–197

    Article  CAS  PubMed  Google Scholar 

  46. Perneczky R et al (2008) Cerebral metabolic dysfunction in patients with dementia with Lewy bodies and visual hallucinations. Dement Geriatr Cogn Disord 25(6):531–538

    Article  CAS  PubMed  Google Scholar 

  47. Bohnen NI et al (2011) Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 52(6):848–855

    Article  CAS  PubMed  Google Scholar 

  48. Ishii K et al (1998) Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 39(11):1875

    CAS  PubMed  Google Scholar 

  49. Kanda T et al (2008) Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 35(12):2227–2234

    Article  PubMed  Google Scholar 

  50. Black S, Gao FQ, Bilbao J (2009) Understanding white matter disease imaging-pathological correlations in vascular cognitive impairment. Stroke 40(3 suppl 1):S48–S52

    Article  PubMed  Google Scholar 

  51. Doyle CA, Slater P (1995) Application of [3H] l-NG-nitro-arginine labelling to measure cerebellar nitric oxide synthase in patients with schizophrenia. Neurosci Lett 202(1):49–52

    Article  CAS  PubMed  Google Scholar 

  52. Kerrouche N et al (2006) 18FDG PET in vascular dementia: differentiation from Alzheimer’s disease using voxel-based multivariate analysis. J Cereb Blood Flow Metab 26(9):1213–1221

    CAS  PubMed  Google Scholar 

  53. Kuczynski B et al (2008) Cognitive and anatomic contributions of metabolic decline in Alzheimer disease and cerebrovascular disease. Arch Neurol 65(5):650–655

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mielke R, Heiss W-D (1998) Positron emission tomography for diagnosis of Alzheimer’s disease and vascular dementia. Springer, Vienna

    Google Scholar 

  55. Marizzoni M et al (2015) Longitudinal reproducibility of automatically segmented hippocampal subfields: a multisite European 3 T study on healthy elderly. Hum Brain Mapp 36(9):3516–3527

    Article  PubMed  Google Scholar 

  56. Redolfi A et al (2015) Head-to-head comparison of two popular cortical thickness extraction algorithms: a cross-sectional and longitudinal study. PLoS One 10(3), e0117692

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149(2):351–356

    Article  CAS  PubMed  Google Scholar 

  58. Moroney JT (1997) Meta-analysis of the Hachinski Ischaemic Score in pathologically verified dementias. Neurology 49:1096–1105

    Article  CAS  PubMed  Google Scholar 

  59. Xekardaki A et al (2014) Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology 274(2):490–499

    Article  PubMed  Google Scholar 

  60. Du AT et al (2006) Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67(7):1215–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Musiek ES et al (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement 8(1):51–59

    Article  PubMed  PubMed Central  Google Scholar 

  62. Aiello M et al (2014) Brain perfusion and glucose metabolism by simultaneous FDG-PET/MR-ASL in patients with cognitive disorders: initial experience. Proc Intl Soc Mag Reson Med

    Google Scholar 

  63. Raichle M et al (2001) A default mode of brain function. Proc Natl Acad Sci 98(2):676–682

    Google Scholar 

  64. Broyd SJ et al (2009) Default-mode network dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296

    Article  PubMed  Google Scholar 

  65. Buckner RL et al (2008) The brain’s default network: anatomy, function and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  66. Schulman GL et al (1997) Common blood flow changes across visual tasks: II Decreases in cerebral cortex. J Cogn Neurosci 9:648–663

    Article  Google Scholar 

  67. Rombouts SA et al (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26:231–239

    Article  PubMed  Google Scholar 

  68. Greicius MD et al (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang L et al (2012) Correlation of regional homogeneity and cognitive decline in Alzheimer’s disease: a preliminary study. Proceedings of International Society of Magnetic Resonance in Medicine 20

    Google Scholar 

  70. Liu Y et al (2008) Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia 46(6):1648–1656

    Article  PubMed  Google Scholar 

  71. Aiello M et al (2015) Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: A PET/MR hybrid scanner study. Neuroimage 113:111–121

    Article  PubMed  Google Scholar 

  72. Hosaka K et al (2005) Validation of anatomical standardization of FDG PET images of normal brain: comparison of SPM and NEUROSTAT. Eur J Nucl Med Mol Imaging 32(1):92–97

    Article  PubMed  Google Scholar 

  73. Gispert JD et al (2003) Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. Neuroimage 19(3):601–612

    Article  CAS  PubMed  Google Scholar 

  74. Buchert R et al (2005) Adjusted scaling of FDG positron emission tomography images for statistical evaluation in patients with suspected Alzheimer’s disease. J Neuroimaging 15(4):348–355

    Article  PubMed  Google Scholar 

  75. Yakushev I et al (2008) Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Res Neuroimaging 164(2):143–153

    Article  PubMed  Google Scholar 

  76. Minoshima S et al (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Annals of neurology 42(1):85–94

    Google Scholar 

  77. Minoshima S et al (1994) Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images. J Nucl Med 35(6):949–954

    CAS  PubMed  Google Scholar 

  78. Minoshima S et al (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface. J Nucl Med 36:1238–1248

    CAS  PubMed  Google Scholar 

  79. Zaidi H et al (2006) Quantitative analysis in nuclear medicine imaging. Springer, New York

    Book  Google Scholar 

  80. Friston KJ et al (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  81. Friston KJ et al (1996) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235

    Article  CAS  PubMed  Google Scholar 

  82. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113

    Article  PubMed  Google Scholar 

  83. Friston KJ et al (1995) Spatial registration and normalization of images. Hum Brain Mapp 3(3):165–189

    Article  Google Scholar 

  84. Brett M et al (2001) Using the Talairach atlas with the MNI template. Neuroimage 13:S85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Aiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aiello, M., Cavaliere, C., Inglese, M., Monti, S., Salvatore, M. (2016). FDG-PET in Dementia. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics