Skip to main content

Instrumentation

  • Chapter
  • First Online:
  • 1942 Accesses

Abstract

The remarkable innovation in molecular imaging and the introduction of advanced neurological diagnostic tools encouraged researchers and physicians in optimizing technological resources to approach brain diseases with increased accuracy of diagnosis. Computed tomography (CT), positron emission tomography (PET), and magnetic resonance (MR) imaging provide different and complementary information with both advantages and disadvantages. PET gives metabolic and molecular data, while CT offers high spatial resolution fiving detailed information at anatomical level, and MR enables investigation at morphological and functional levels also allowing diffusion imaging and spectroscopy [1]. In the attempt to overcome the limitations of stand-alone imaging methods, different modality combinations have been introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Margolis DJ, Hoffman JM, Gambhir SS et al (2007) Molecular imaging techniques in body imaging. Radiology 245:333–356

    Article  PubMed  Google Scholar 

  2. Bar-Shalom R, Yefremov N, Israel O et al (2003) Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44:1200–1209

    PubMed  Google Scholar 

  3. Pichler BJ, Judenhofer MS, Pfannenberg C (2008) Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Pharmacol 185:109–132

    Article  CAS  PubMed  Google Scholar 

  4. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New York

    Google Scholar 

  5. Kalender WA (ed) (2011) Computed tomography: fundamentals, system technology, image quality, application, 3rd edn. Erlangen, Publicis Publishing

    Google Scholar 

  6. Ohnesorge B, Flohr T (eds) (2006) Multi-slice and dual-source CT in cardiac imaging: principles-protocols-indications-outlook, 2nd edn. Heidelberg, Springer

    Google Scholar 

  7. Johnson TR (2009) Dual-energy CT: technical background. In: Reiser MF, Becker CR (eds) Multislice CT, 3rd edn. Springer, Heidelberg, pp 65–73

    Chapter  Google Scholar 

  8. Willemink MJ, de Jong PA, Schilham AM et al (2013) Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 23:1623–1631

    Article  PubMed  Google Scholar 

  9. Nutt R (2002) 1999 ICP Distinguished Scientist Award. The history of positron emission tomography. Mol Imaging Biol 4:11–26

    Article  PubMed  Google Scholar 

  10. Muehllehner G, Karp JS (2006) Positron emission tomography. Phys Med Biol 51:R117–R137

    Article  CAS  PubMed  Google Scholar 

  11. Moses WW (2011) Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 648(Supplement 1):S236–S240

    Article  CAS  PubMed  Google Scholar 

  12. Bendriem B, Townsend DW (eds) (2013) The theory and practice of 3D PET, vol 32. Springer Science & Business Media, Dordrecht

    Google Scholar 

  13. Bischof Delaloye A, Carrió I, Silberman B et al (2007) White paper of the European Association of Nuclear Medicine (EANM) and the European Society of Radiology (ESR) on multimodality imaging. Eur J Nucl Med Mol Imaging 34:1147–1151

    Article  PubMed  Google Scholar 

  14. Frayne R, Goodyear BG, Sevick RJ et al (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38(7):385–402

    PubMed  Google Scholar 

  15. Dale BM, Brown MA, Semelka RC (eds) (2015) MRI: basic principles and applications, 5th edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  16. Turner R (1993) Gradient coil design: a review of methods. Magn Reson Imaging 11:903–920

    Article  CAS  PubMed  Google Scholar 

  17. Liang ZP, Lauterbur PC (2000) Principles of magnetic resonance imaging: a signal processing perspective. Wiley-IEEE Press, New York

    Google Scholar 

  18. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 68:497–505

    Article  Google Scholar 

  19. Reichenbach JR, Schweser F, Serres B, Deistung A (2015) Quantitative susceptibility mapping: concepts and applications. Clin Neuroradiol 25(Suppl 2):225–230

    Article  PubMed  Google Scholar 

  20. Ciobanu L, Solomon E, Frydman L et al (2015) fMRI contrast at high and ultrahigh magnetic fields: insight from complementary methods. Neuroimage 113:37–43

    Article  PubMed  Google Scholar 

  21. Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 45:765–769

    Article  CAS  PubMed  Google Scholar 

  22. Townsend DW, Beyer T, Blodgett TM (2003) PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 33:193–204

    Article  PubMed  Google Scholar 

  23. Schöder H, Erdi YE, Yeung HW et al (2003) PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 30:1419–1437

    Article  PubMed  Google Scholar 

  24. Seemann MD (2004) PET/CT: fundamental principles. Eur J Med Res 9:241–246

    PubMed  Google Scholar 

  25. Alessio AM, Kinahan PE, Karp JS et al (2004) PET/CT scanner instrumentation, challenges, and solutions. Radiol Clin North Am 42:1017–1032

    Article  PubMed  Google Scholar 

  26. Farwell MD, Pryma DA, Mankoff DA (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120:3433–3445

    Article  CAS  PubMed  Google Scholar 

  27. Delso G, Ter Voert E, Veit-Haibach P (2015) How does PET/MR work? Basic physics for physicians. Abdom Imaging 40:1352–1357

    Article  PubMed  Google Scholar 

  28. Ziegler SI, Pichler BJ, Schwaiger M et al (2001) A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 28:136–143

    Article  CAS  PubMed  Google Scholar 

  29. Judenhofer MS, Wehrl HF, Pichler BJ et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  CAS  PubMed  Google Scholar 

  30. Wehrl HF, Sauter AW, Pichler BJ et al (2015) Combined PET/MR: a technology becomes mature. J Nucl Med 56:165–168

    Article  PubMed  Google Scholar 

  31. Shah SN, Huang SS (2015) Hybrid PET/MR imaging: physics and technical considerations. Abdom Imaging 40:1358–1365

    Article  PubMed  Google Scholar 

  32. Delso G, Ziegler S (2009) PET/MRI system design. Eur J Nucl Med Mol Imaging 36(Suppl 1):S86–S92

    Article  PubMed  Google Scholar 

  33. Wagenknecht G, Kaiser HJ, Herzog H et al (2013) MRI for attenuation correction in PET: methods and challenges. MAGMA 26:99–113

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hofmann M, Bezrukov I, Schölkopf B et al (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 5:1392–1399

    Article  Google Scholar 

  35. Berker Y, Franke J, Schulz V et al (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53:796–804

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cuocolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larobina, M., Nappi, C., Gaudieri, V., Cuocolo, A. (2016). Instrumentation. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics