Skip to main content

Multimodality Imaging of Huntington’s Disease

  • Chapter
  • First Online:
PET-CT and PET-MRI in Neurology

Abstract

Molecular imaging has represented a major breakthrough in the advancement in the field of neurobiology allowing in vivo quantification of the molecular processes that underlay cellular dysfunction and loss in Huntington’s disease (HD). The onset and course of the disease depends on a cascade of events triggered by a genetic mutation involving several tissues and brain structures. In recent years, positron emission tomography (PET) and magnetic resonance imaging (MRI) have improved our understanding of the neurodegenerative mechanisms leading to its clinical manifestations. PET imaging has been developed as a potential biological marker for estimating the age of onset of the disease and assessing the effectiveness of experimental treatments. The present chapter summarizes the contribution of PET and MRI in the research field on Huntington’s disease, through some of the most significant achievements that have helped comprehend the molecular changes, the clinical manifestations, and the course of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72(6):971–983

    Google Scholar 

  2. Kremer B et al (1994) A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330(20):1401–1406

    Article  CAS  PubMed  Google Scholar 

  3. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228

    Article  CAS  PubMed  Google Scholar 

  4. Norremolle A et al (1995) Correlation between magnitude of CAG repeat length alterations and length of the paternal repeat in paternally inherited Huntington’s disease. Clin Genet 47(3):113–117

    Article  CAS  PubMed  Google Scholar 

  5. Davies SW et al (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90(3):537–548

    Article  CAS  PubMed  Google Scholar 

  6. Pringsheim T et al (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27(9):1083–1091

    Article  PubMed  Google Scholar 

  7. Paulsen JS et al (2001) Clinical markers of early disease in persons near onset of Huntington’s disease. Neurology 57(4):658–662

    Article  CAS  PubMed  Google Scholar 

  8. Rosenblatt A et al (2003) Predictors of neuropathological severity in 100 patients with Huntington’s disease. Ann Neurol 54(4):488–493

    Article  PubMed  Google Scholar 

  9. McCusker EA et al (2013) Unawareness of motor phenoconversion in Huntington disease. Neurology 81(13):1141–1147

    Article  PubMed  PubMed Central  Google Scholar 

  10. Snowden J et al (2001) Longitudinal evaluation of cognitive disorder in Huntington’s disease. J Int Neuropsychol Soc 7(1):33–44

    Article  CAS  PubMed  Google Scholar 

  11. van Duijn E et al (2008) Cross-sectional study on prevalences of psychiatric disorders in mutation carriers of Huntington’s disease compared with mutation-negative first-degree relatives. J Clin Psychiatry 69(11):1804–1810

    Article  PubMed  Google Scholar 

  12. Kuhl DE (1984) Imaging local brain function with emission computed tomography. Radiology 150(3):625–631

    Article  CAS  PubMed  Google Scholar 

  13. Mazziotta JC et al (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 316(7):357–362

    Article  CAS  PubMed  Google Scholar 

  14. Hayden MR et al (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36(7):888–894

    Article  CAS  PubMed  Google Scholar 

  15. Ciarmiello A et al (2006) Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med 47(2):215–222

    CAS  PubMed  Google Scholar 

  16. Antonini A et al (1996) Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 119(Pt 6):2085–2095

    Article  PubMed  Google Scholar 

  17. Ciarmiello A et al (2012) 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging 39(6):1030–1036

    Article  CAS  PubMed  Google Scholar 

  18. Young AB et al (1986) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20(3):296–303

    Article  CAS  PubMed  Google Scholar 

  19. Berent S et al (1988) Positron emission tomographic scan investigations of Huntington’s disease: cerebral metabolic correlates of cognitive function. Ann Neurol 23(6):541–546

    Article  CAS  PubMed  Google Scholar 

  20. Kirch RD et al (2013) Early deficits in declarative and procedural memory dependent behavioral function in a transgenic rat model of Huntington’s disease. Behav Brain Res 239:15–26

    Article  PubMed  Google Scholar 

  21. Feigin A et al (2007) Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain 130(Pt 11):2858–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090, discussion 1097–9

    Article  PubMed  Google Scholar 

  23. Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3(3):299–308

    Article  CAS  PubMed  Google Scholar 

  24. Fazio F, Perani D (2000) Importance of partial-volume correction in brain PET studies. J Nucl Med 41(11):1849–1850

    CAS  PubMed  Google Scholar 

  25. Quarantelli M et al (2004) Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med 45(2):192–201

    PubMed  Google Scholar 

  26. Levey AI et al (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90(19):8861–8865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karimi M, Perlmutter JS (2015) The role of dopamine and dopaminergic pathways in dystonia: insights from neuroimaging. Tremor Other Hyperkinet Mov (N Y) 5:280

    Google Scholar 

  28. Ginovart N et al (1997) PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120(Pt 3):503–514

    Article  PubMed  Google Scholar 

  29. Andrews TC et al (1999) Huntington’s disease progression. PET and clinical observations. Brain 122(Pt 12):2353–2363

    Article  PubMed  Google Scholar 

  30. van Oostrom JC et al (2009) Changes in striatal dopamine D2 receptor binding in pre-clinical Huntington’s disease. Eur J Neurol 16(2):226–231

    Article  PubMed  Google Scholar 

  31. Lawrence AD et al (1998) The relationship between striatal dopamine receptor binding and cognitive performance in Huntington’s disease. Brain 121(Pt 7):1343–1355

    Article  PubMed  Google Scholar 

  32. Pavese N et al (2003) Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain 126(Pt 5):1127–1135

    Article  PubMed  Google Scholar 

  33. Pavese N et al (2010) Cortical dopamine dysfunction in symptomatic and premanifest Huntington’s disease gene carriers. Neurobiol Dis 37(2):356–361

    Article  CAS  PubMed  Google Scholar 

  34. Ciarmiello A (2011) Imaging of neuroinflammation. Eur J Nucl Med Mol Imaging 38(12):2198–2201

    Article  PubMed  Google Scholar 

  35. Sutter AP et al (2002) Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human esophageal cancer cells. Int J Cancer 102(4):318–327

    Article  CAS  PubMed  Google Scholar 

  36. Cagnin A et al (2001) In-vivo measurement of activated microglia in dementia. Lancet 358(9280):461–467

    Article  CAS  PubMed  Google Scholar 

  37. Politis M et al (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32(2):258–270

    Article  PubMed  Google Scholar 

  38. Pavese N et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66(11):1638–1643

    Article  CAS  PubMed  Google Scholar 

  39. Rosas HD et al (2001) Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 57(6):1025–1028

    Article  CAS  PubMed  Google Scholar 

  40. Paulsen JS et al (2008) Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 79(8):874–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harris GJ et al (1992) Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol 31(1):69–75

    Article  CAS  PubMed  Google Scholar 

  42. Harris GJ et al (1996) Single photon emission computed tomographic blood flow and magnetic resonance volume imaging of basal ganglia in Huntington’s disease. Arch Neurol 53(4):316–324

    Article  CAS  PubMed  Google Scholar 

  43. Aylward EH et al (1996) Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol 53(12):1293–1296

    Article  CAS  PubMed  Google Scholar 

  44. Aylward EH et al (1997) Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology 48(2):394–399

    Article  CAS  PubMed  Google Scholar 

  45. Tabrizi SJ et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10(1):31–42

    Article  PubMed  Google Scholar 

  46. Rosas HD et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131(Pt 4):1057–1068

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hobbs NZ et al (2010) The progression of regional atrophy in premanifest and early Huntington’s disease: a longitudinal voxel-based morphometry study. J Neurol Neurosurg Psychiatry 81(7):756–763

    Article  PubMed  Google Scholar 

  48. Squitieri F et al (2009) Distinct brain volume changes correlating with clinical stage, disease progression rate, mutation size, and age at onset prediction as early biomarkers of brain atrophy in Huntington’s disease. CNS Neurosci Ther 15(1):1–11

    Article  PubMed  Google Scholar 

  49. Wang K et al (2007) Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 28(10):967–978

    Article  PubMed  Google Scholar 

  50. Sheline YI, Raichle ME (2013) Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry 74(5):340–347

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hacker CD et al (2012) Resting state functional connectivity of the striatum in Parkinson’s disease. Brain 135(Pt 12):3699–3711

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baik K et al (2014) Dopaminergic modulation of resting-state functional connectivity in de novo patients with Parkinson’s disease. Hum Brain Mapp 35(11):5431–5441

    Article  PubMed  Google Scholar 

  53. Dumas EM et al (2013) Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. Neuroimage Clin 2:377–384

    Article  PubMed  PubMed Central  Google Scholar 

  54. Werner CJ et al (2014) Altered resting-state connectivity in Huntington’s disease. Hum Brain Mapp 35(6):2582–2593

    Article  PubMed  Google Scholar 

  55. Wolf RC et al (2007) Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain 130(Pt 11):2845–2857

    Article  PubMed  Google Scholar 

  56. Poudel GR et al (2015) Functional changes during working memory in Huntington’s disease: 30-month longitudinal data from the IMAGE-HD study. Brain Struct Funct 220(1):501–512

    Article  PubMed  Google Scholar 

  57. Thiruvady DR et al (2007) Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry 78(2):127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Georgiou-Karistianis N et al (2014) Functional magnetic resonance imaging of working memory in Huntington’s disease: cross-sectional data from the IMAGE-HD study. Hum Brain Mapp 35(5):1847–1864

    Article  PubMed  Google Scholar 

  59. Unschuld PG et al (2012) Depressive symptoms in prodromal Huntington’s disease correlate with Stroop-interference related functional connectivity in the ventromedial prefrontal cortex. Psychiatry Res 203(2-3):166–174

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ciarmiello A et al (2014) Hybrid SPECT/CT imaging in neurology. Curr Radiopharm 7(1):5–11

    Article  CAS  PubMed  Google Scholar 

  61. Mansi L, Ciarmiello A (2014) Perspectives on PET/MR imaging: are we ready for clinical use? J Nucl Med 55(4):529–530

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ciarmiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ciarmiello, A., Giovacchini, G. (2016). Multimodality Imaging of Huntington’s Disease. In: Ciarmiello, A., Mansi, L. (eds) PET-CT and PET-MRI in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-31614-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31614-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31612-3

  • Online ISBN: 978-3-319-31614-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics