Advertisement

Method of Least Squares

  • Simon ŠircaEmail author
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The method of least squares is the basic tool of developing and verifying models by fitting theoretical curves to data. Fitting functions that linearly depend on model parameters (linear regression) is treated first, discussing the distinct cases of known and unknown experimental uncertainties, finding confidence intervals for the optimal parameters, and estimating the quality of the fit. Regression with standard and orthogonal polynomials, straight-line fitting and fitting a constant are analyzed separately. Linear regression for binned data, linear regression with constraints, general linear regression by using singular-value decomposition, and robust linear regression are presented, followed by a discussion of non-linear regression.

References

  1. 1.
    A.G. Frodesen, O. Skjeggestad, H. Tøfte, Probability and Statistics in Particle Physics (Universitetsforlaget, Bergen, 1979)Google Scholar
  2. 2.
    GISS/NASA Analysis, based on: J. Hansen, R. Ruedy, M. Sato, K. Lo, Global surface temperature change, Rev. Geophys. 48 (2010) RG4004Google Scholar
  3. 3.
    S. Širca, M. Horvat, Computational Methods for Physicists (Springer, Berlin, 2012)zbMATHGoogle Scholar
  4. 4.
    S. Brandt, Data Analysis, 4th edn. (Springer, Berlin, 2014)CrossRefGoogle Scholar
  5. 5.
    K.A. Olive et al. (Particle Data Group), The review of particle physics. Chin. Phys. C 38, 090001 (2014)Google Scholar
  6. 6.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)zbMATHGoogle Scholar
  7. 7.
    R.A. Maronna, R.D. Martin, V.J. Yohai, Robust statistics (John Wiley & Sons, Chichester, Theory and methods, 2006)Google Scholar
  8. 8.
    T.A. Boden, G. Marland, R.J. Andres, Global, regional, and national fossil-fuel \({\rm CO}_2\) emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, doi: 10.3334/CDIAC/00001_V2015
  9. 9.
    NIST Statistical Reference Datasets (2003). The data files and explanations are accessible at http://www.itl.nist.gov/div898/strd/
  10. 10.
    D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood Cliffs, 1989)zbMATHGoogle Scholar
  11. 11.
    T.A. Hahn, Thermal expansion of copper from \(20\) to \(800\,{\rm K}\)—standard reference material 736. J. Appl. Phys. 41, 5096 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    S.S. Li, W.R. Thurber, The dopant density and temperature dependence of electron mobility and resistivity in \(n\)-type silicon. Solid State Electron. 20, 609 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations