Advertisement

Stable Distributions and Random Walks

  • Simon ŠircaEmail author
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Stable distributions are special types of probability distributions whose origin is a particular limit regime of other types of distributions. They are closely related to the simple convolution process, which is introduced first for continuous and then for discrete random variables. This leads to the central limit theorem as one of the most important results of probability theory, as well as to its generalized version which is useful in the analysis of random walks. Extreme-value distributions are also presented, as they possess a limit theorem of their own (Fisher–Tippett–Gnedenko). The last part is devoted to the discussion of discrete-time and continuous-time random walks, together with their characteristic diffusion properties.

References

  1. 1.
    D.L. Evans, L.M. Leemis, Algorithms for computing the distributions of sums of discrete random variables. Math. Comp. Model. 40, 1429 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. (Wiley, New York, 1971)zbMATHGoogle Scholar
  3. 3.
    I.S. Tyurin, On the accuracy of the Gaussian approximation. Dokl. Math. 80, 840 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Lyon, Why are normal distributions normal? Brit. J. Phil. Sci. 65, 621 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    I. Kuščer, A. Kodre, Mathematik in Physik und Technik (Springer, Berlin, 1993)zbMATHGoogle Scholar
  6. 6.
    J.P. Nolan, Stable Distributions—Models for Heavy Tailed Data (Birkhäuser, Boston, 2010)Google Scholar
  7. 7.
    S. Borak, W. Härdle, R. Weron, Stable Distributions, SFB 649 Discussion Paper 2005–008 (Humboldt University Berlin, Berlin, 2005)Google Scholar
  8. 8.
    S. Širca, M. Horvat, Computational Methods for Physicists (Springer, Berlin, 2012)zbMATHGoogle Scholar
  9. 9.
    GSL (GNU Scientific Library), http://www.gnu.org/software/gsl
  10. 10.
    G.G. Márquez, One Hundred Years of Solitude (HarperCollins, New York, 2006)Google Scholar
  11. 11.
    E.J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958)zbMATHGoogle Scholar
  12. 12.
    S. Coles, An Introduction to Statistical Modeling of Extreme Values (Springer, Berlin, 2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1983)CrossRefzbMATHGoogle Scholar
  14. 14.
    S.I. Resnick, Extreme Values, Regular Variation, and Point Processes (Springer, New York, 1987)CrossRefzbMATHGoogle Scholar
  15. 15.
    R.A. Fisher, L.H.C. Tippett, On the estimation of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Phil. Soc. 24, 180 (1928)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    B.V. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
  18. 18.
    B.D. Hughes, Random Walks and Random Environments: Vol. 1: Random Walks (Oxford University Press, New York, 1995)zbMATHGoogle Scholar
  19. 19.
    M. Bazant, Random walks and diffusion, MIT OpenCourseWare, Course 18.366, http://ocw.mit.edu/courses/mathematics/
  20. 20.
    E.W. Montroll, G.H. Weiss, Random walks on lattices II. J. Math. Phys. 6, 167 (1965)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    M.F. Shlesinger, B.J. West, J. Klafter, Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100 (1987)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    V. Tejedor, R. Metzler, Anomalous diffusion in correlated continuous time random walks. J. Phys. A: Math. Theor. 43, 082002 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J.J. Brehm, W.J. Mullin, Introduction to the Structure of Matter (Wiley, New York, 1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations