Skip to main content

The Monte–Carlo Method

  • Chapter
  • First Online:
  • 3724 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

The Monte–Carlo method is introduced as a generic tool for the solution of mathematical physics models by means of computer simulation. These problems range from simple one-dimensional integration to sophisticated multi-dimensional models involving elaborate geometries and complex system states. A historical introduction and an exposition of the basic idea are followed by a basic treatment of numerical integration and discussing methods of variance reduction like importance sampling and use of quasi-random sequences. Markov-chain Monte Carlo is presented as a powerful method to generate random numbers according to arbitrary, even extremely complicated distributions. A specific implementation in the form of the Metropolis–Hastings algorithm is offered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44, 335 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  2. J.E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd edn. (Springer, Berlin, 2003)

    Google Scholar 

  3. M.H. Kalos, P.A. Whitlock, Monte Carlo Methods, 2nd edn. (Wiley, Weinheim, 2008)

    Google Scholar 

  4. I.M. Sobol’, On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Maths. Math. Phys. 7, 86 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. I.A. Antonov, V.M. Saleev, An economic method of computing \(LP_\tau \) sequences. USSR Comput. Math. Math. Phys. 19, 252 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing, 3 edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  7. S.H. Paskov, J.F. Traub, Faster valuation of financial derivatives. J. Portf. Manag. 22, 113 (1995)

    Article  Google Scholar 

  8. J.F. Traub, S.H. Paskov, I.F. Vanderhoof, A. Papageorgiou, Portfolio Structuring Using Low-discrepancy Deterministic Sequences, U.S. Patent 6,058,377, http://www.google.com/patents/US6058377

  9. S. Chib, in Handbook of Computational Statistics, ed. by J.E. Gentle et al. Markov Chain Monte Carlo Technology, (Springer, Berlin, 2012), p. 73

    Google Scholar 

  10. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  11. S. Chib, E. Greenberg, Understanding the Metropolis-Hastings algorithm. Am. Stat. 49, 327 (1995)

    Google Scholar 

  12. I. Beichl, F. Sullivan, The Metropolis algorithm. Comput. Sci. Eng. 2(1), 65 (2000)

    Google Scholar 

  13. C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  14. W.R. Gilks, S. Richardson, D. Spiegelhalter (eds.), Markov-Chain Monte Carlo in Practice (Chapman & Hall / CRC, New York, 1996)

    MATH  Google Scholar 

  15. S. Brooks, A. Gelman, G. Jones, X.-Li. Meng (eds.), Handbook of Markov-Chain Monte Carlo (Chapman & Hall / CRC, New York, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Širca .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Širca, S. (2016). The Monte–Carlo Method. In: Probability for Physicists. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-31611-6_13

Download citation

Publish with us

Policies and ethics