Skip to main content

Molecular Testing

  • Chapter
  • First Online:
  • 917 Accesses

Abstract

Recent advances have led to a better understating of the molecular pathways of thyroid carcinogenesis, in particular, papillary thyroid carcinoma, which is closely associated with the MAPK pathway. Various novel molecular diagnostic tests based on the detection of molecular biomarkers have been developed to improve the diagnostic accuracy of thyroid FNA with equivocal cytologic interpretations. The current commercially available molecular tools used in routine clinical setting are based on either the rule-out (gene expression classifier) or rule-in (somatic genetic mutations) approaches. New testing platforms, such as those based on next-gene sequencing or microRNAs, are continually being developed to offer more economical, streamlined, targeted, and accurate molecular diagnostic tools. Last but not least, it is important to recognize that molecular testing, like patient demographics and history, physical examination, thyroid ultrasound, hormonal assay, as well as FNA biopsy, is just one of many steps that can be undertaken in the evaluation of a thyroid nodule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569–77.

    CAS  PubMed  Google Scholar 

  2. Nikiforov YE. Molecular analysis of thyroid tumors. Mod Pathol. 2011;24 Suppl 2:S34–43.

    Article  CAS  PubMed  Google Scholar 

  3. Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000;289:1357–60.

    Article  CAS  PubMed  Google Scholar 

  4. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88:2318–26.

    Article  CAS  PubMed  Google Scholar 

  5. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid. 2010;20:697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cantara S, Capezzone M, Marchisotta S, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–9.

    Article  CAS  PubMed  Google Scholar 

  7. Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93:682–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6:292–306.

    Article  CAS  PubMed  Google Scholar 

  9. Nikiforova MN, Nikiforov YE. Molecular diagnostics and predictors in thyroid cancer. Thyroid. 2009;19:1351–61.

    Article  CAS  PubMed  Google Scholar 

  10. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19:1159–65.

    Article  PubMed  Google Scholar 

  11. Lee JH, Lee ES, Kim YS. Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer. 2007;110:38–46.

    Article  PubMed  Google Scholar 

  12. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    Article  CAS  PubMed  Google Scholar 

  13. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  14. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS. BRAF(E600) in benign and malignant human tumours. Oncogene. 2008;27:877–95.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.

    Article  CAS  PubMed  Google Scholar 

  16. Trovisco V, Soares P, Sobrinho-Simoes M. B-RAF mutations in the etiopathogenesis, diagnosis, and prognosis of thyroid carcinomas. Hum Pathol. 2006;37:781–6.

    Article  CAS  PubMed  Google Scholar 

  17. Adeniran AJ, Theoharis C, Hui P, et al. Reflex BRAF testing in thyroid fine-needle aspiration biopsy with equivocal and positive interpretation: a prospective study. Thyroid. 2011;21:717–23.

    Article  CAS  PubMed  Google Scholar 

  18. Xing M, Tufano RP, Tufaro AP, et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab. 2004;89:2867–72.

    Article  CAS  PubMed  Google Scholar 

  19. Nam SY, Han BK, Ko EY, et al. BRAF V600E mutation analysis of thyroid nodules needle aspirates in relation to their ultrasonographic classification: a potential guide for selection of samples for molecular analysis. Thyroid. 2010;20:273–9.

    Article  CAS  PubMed  Google Scholar 

  20. Marchetti I, Lessi F, Mazzanti CM, et al. A morpho-molecular diagnosis of papillary thyroid carcinoma: BRAF V600E detection as an important tool in preoperative evaluation of fine-needle aspirates. Thyroid. 2009;19:837–42.

    Article  CAS  PubMed  Google Scholar 

  21. Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96:3390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94:2092–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ferraz C, Rehfeld C, Krogdahl A, et al. Detection of PAX8/PPARG and RET/PTC rearrangements is feasible in routine air-dried fine needle aspiration smears. Thyroid. 2012;22:1025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moses W, Weng J, Kebebew E. Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid. 2011;21:367–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.

    Article  CAS  PubMed  Google Scholar 

  26. Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol Endocrinol. 2002;16:903–11.

    CAS  PubMed  Google Scholar 

  27. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120:71–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ferraz C, Eszlinger M, Paschke R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab. 2011;96:2016–26.

    Article  CAS  PubMed  Google Scholar 

  29. Nikiforov YE, Yip L, Nikiforova MN. New strategies in diagnosing cancer in thyroid nodules: impact of molecular markers. Clin Cancer Res. 2013;19:2283–8.

    Article  CAS  PubMed  Google Scholar 

  30. Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367:705–15.

    Article  CAS  PubMed  Google Scholar 

  31. Eszlinger M, Hegedus L, Paschke R. Ruling in or ruling out thyroid malignancy by molecular diagnostics of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2014;28:545–57.

    Article  CAS  PubMed  Google Scholar 

  32. McIver B, Castro MR, Morris JC, et al. An independent study of a gene expression classifier (afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99:4069–77.

    Article  CAS  PubMed  Google Scholar 

  33. Harrell RM, Bimston DN. Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract. 2014;20:364–9.

    Article  PubMed  Google Scholar 

  34. Alexander EK, Schorr M, Klopper J, et al. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab. 2014;99:119–25.

    Article  CAS  PubMed  Google Scholar 

  35. McIver B. Evaluation of the thyroid nodule. Oral Oncol. 2013;49:645–53.

    Article  PubMed  Google Scholar 

  36. Vanderlaan PA, Krane JF, Cibas ES. The frequency of “atypia of undetermined significance” interpretations for thyroid fine-needle aspirations is negatively correlated with histologically proven malignant outcomes. Acta Cytol. 2011;55:512–7.

    Article  PubMed  Google Scholar 

  37. Wang CC, Friedman L, Kennedy GC, et al. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid. 2011;21:243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li H, Robinson KA, Anton B, Saldanha IJ, Ladenson PW. Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2011;96:E1719–26.

    Article  CAS  PubMed  Google Scholar 

  39. He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102:19075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:3584–91.

    Article  CAS  PubMed  Google Scholar 

  41. Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13:497–508.

    Article  CAS  PubMed  Google Scholar 

  42. Kim MI, Alexander EK. Diagnostic use of molecular markers in the evaluation of thyroid nodules. Endocr Pract. 2012;18:796–802.

    Article  PubMed  Google Scholar 

  43. Lodewijk L, Prins AM, Kist JW, et al. The value of miRNA in diagnosing thyroid cancer: a systematic review. Cancer Biomark. 2012;11:229–38.

    CAS  PubMed  Google Scholar 

  44. Rossing M. Classification of follicular cell-derived thyroid cancer by global RNA profiling. J Mol Endocrinol. 2013;50:R39–51.

    Article  CAS  PubMed  Google Scholar 

  45. Stokowy T, Wojtas B, Fujarewicz K, Jarzab B, Eszlinger M, Paschke R. miRNAs with the potential to distinguish follicular thyroid carcinomas from benign follicular thyroid tumors: results of a meta-analysis. Horm Metab Res. 2014;46:171–80.

    Article  CAS  PubMed  Google Scholar 

  46. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120:3627–34.

    Article  CAS  PubMed  Google Scholar 

  48. Le Mercier M, D’Haene N, De Neve N, et al. Next-generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology. Histopathology. 2015;66:215–24.

    Article  PubMed  Google Scholar 

  49. Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93:3943–9.

    Article  CAS  PubMed  Google Scholar 

  50. Xing M, Clark D, Guan H, et al. BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J Clin Oncol. 2009;27:2977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gouveia C, Can NT, Bostrom A, Grenert JP, van Zante A, Orloff LA. Lack of association of BRAF mutation with negative prognostic indicators in papillary thyroid carcinoma: the University of California, San Francisco, experience. JAMA Otolaryngol Head Neck Surg. 2013;139:1164–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adeniran, A.J., Chhieng, D. (2016). Molecular Testing. In: Common Diagnostic Pitfalls in Thyroid Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-31602-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31602-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31600-0

  • Online ISBN: 978-3-319-31602-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics