Skip to main content

Graphene Derivatives: Carbon Nanocones and CorSu Lattice: A Topological Approach

  • Chapter
  • First Online:
Book cover Distance, Symmetry, and Topology in Carbon Nanomaterials

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 9))

  • 547 Accesses

Abstract

Graphene is a graphite sheet with (6,3) covering and all sp2 carbon atoms. In this chapter, two structural modifications of graphene are presented: the cones and CorSu (coronene-sumanene) tessellation. Topology of these modified graphenes is given in terms of several counting polynomials and corresponding topological indices. Analytical formulas were derived either by numerical analysis or by the cutting procedure. In the case of CorSu lattice, composition rules (with fragmental contributions) for the Omega polynomial were established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouimrane A, Compton OC, Amine K, Nguyen ST (2010) Non − annealed graphene paper as a binder − free anode for lithium − iron batteries. J Phys Chem C 114:12800–12804

    Article  Google Scholar 

  • Alipour MA, Ashrafi AR (2009) A numerical method for computing the Wiener index of one − heptagonal carbon nanocone. J Comput Theor Nanosci 6:1204–1207

    Article  Google Scholar 

  • Ashrafi AR, Gholaminezhad F (2008) The edge Szeged index of one − pentagonal carbon nanocones. Int J Nanosci Nanotechnol (IJNN) 4:135–138

    Google Scholar 

  • Ashrafi AR, Gholaminezhad F (2009) The PI and edge Szeged indices of one − heptagonal carbon nanocones. Curr Nanosci 5:51–53

    Article  Google Scholar 

  • Ashrafi AR, Manoochehrian B, Yousefi − Azari H (2006) On the PI polynomial of a graph. Util Math 71:97–108

    Google Scholar 

  • Clar E (1964) Polycyclic hydrocarbons. Academic, London

    Book  Google Scholar 

  • Clar E (1972) The aromatic sextet. Wiley, New York

    Google Scholar 

  • Das B, Prasad KE, Ramamurty U, Rao CNR (2009) Nano − indentation studies on polymer matrix composites reinforced by few − layer graphene. Nanotechnology 20:25705

    Google Scholar 

  • Denis PA (2009) Density functional investigation of thioepoxidated and thiolated graphene. J Phys Chem C 113:5612–5619

    Article  Google Scholar 

  • Diudea MV (2006) Omega polynomial. Carpath J Math 22:43–47

    Google Scholar 

  • Diudea MV (2010a) Omega polynomial: composition rules in CorSu lattice. Int J Chem Model 2(4):1–6

    Google Scholar 

  • Diudea MV (2010b) Counting polynomials and related indices by edge cutting procedures. MATCH Commun Math Comput Chem 64:569–590

    Google Scholar 

  • Diudea MV, Ilić A (2009) CorSu network − a new graphene design. Studia Univ “Babes − Bolyai” Chemia 54(4):171–177

    Google Scholar 

  • Diudea MV, Cigher S, John PE (2008) Omega and related counting polynomials. MATCH Commun Math Comput Chem 60:237–250

    Google Scholar 

  • Diudea MV, Cigher S, Vizitiu AE, Florescu MS, John PE (2009) Omega polynomial and its use in nanostructure description. J Math Chem 45:316–329

    Article  Google Scholar 

  • Djoković D (1973) Distance preserving subgraphs of hypercubes. J Combin Theory Ser B 14:263–267

    Article  Google Scholar 

  • Ebbesen TW (1998) Cones and tubes: geometry in the chemistry of carbon. Acc Chem Res 31:558–566

    Article  Google Scholar 

  • Eda G, Unalan HE, Rupesinghe N, Amaratunga GAJ, Chhowalla M (2008) Field emission from graphene based composite thin films. Appl Phys Lett 93:233–502

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  • Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9:4031–4036

    Article  Google Scholar 

  • Gutman I (1994) A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes N Y 27:9–15

    Google Scholar 

  • Ilić A, Diudea MV, Gholami − Nezhaad F, Ashrafi AR (2010) Topological indices in nanocones. In: Gutman I, Furtula B (eds) Novel Molecular structure descriptors − theory and applications. Univ Kragujevac, Kragujevac, pp 217–226

    Google Scholar 

  • John PE, Vizitiu AE, Cigher S, Diudea MV (2007) CI index in tubular nanostructures. MATCH Commun Math Comput Chem 57:479–484

    Google Scholar 

  • Khadikar PV (2000) On a novel structural descriptor PI. Nat Acad Sci Lett 23:113–118

    Google Scholar 

  • Khalifeh MH, Yousefi − Azari H, Ashrafi AR (2008) Vertex and edge PI indices of cartesian product graphs. Discret Appl Math 156:1780–1789

    Article  Google Scholar 

  • Klavžar S (2008a) Some comments on co graphs and CI index. MATCH Commun Math Comput Chem 59:217–222

    Google Scholar 

  • Klavžar S (2008b) A bird’s eye view of the cut method and a survey of its applications in chemical graph theory. MATCH Commun Math Comput Chem 60:255–274

    Google Scholar 

  • Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW (1997) Graphitic cones and the nucleation of curved carbon surfaces. Nature 388:451–454

    Article  Google Scholar 

  • Lee G, Lee B, Kim J, Cho K (2009) Ozone adsorption on graphene: ab initio study and experimental validation. J Phys Chem C 113:14225–14229

    Article  Google Scholar 

  • Ng YH, Lightcap IV, Goodwin K, Matsumura M, Kamat PV (2010) To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films. J Phys Chem Lett 1:2222–2227

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • Okamoto Y, Miyamoto Y (2001) Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J Phys Chem B 105:3470–3474

    Article  Google Scholar 

  • Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J Phys Chem C 111:18099–18111

    Article  Google Scholar 

  • Seger B, Kamat PV (2009) Electrocatalytically active graphene − platinum nanocomposites. Role of 2 − D carbon support in PEM fuel cells. J Phys Chem C 113:7990–7995

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene − based composite materials. Nature 442:282–286

    Article  Google Scholar 

  • Tylianakis E, Psofogiannakis GM, Froudakis GE (2010) Li − doped pillared graphene oxide: a graphene − based nanostructured material for hydrogen storage. J Phys Chem Lett 1:2459–2464

    Article  Google Scholar 

  • Ueta A, Tanimura Y, Prezhdo OV (2010) Distinct infrared spectral signatures of the 1,2 − and 1,4 − fluorinated single − walled carbon nanotubes: a molecular dynamics study. J Phys Chem Lett 1:1307–1311

    Article  Google Scholar 

  • Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299:1361

    Article  Google Scholar 

  • Vizitiu AE, Diudea MV (2006) Conetori of high genera. Studia Univ “Babes − Bolyai” Chemia 51:39

    Google Scholar 

  • Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009a) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  Google Scholar 

  • Wang S, Tang LA, Bao Q, Lin M, Deng S, Goh BM, Loh KP (2009b) Room − temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. J Am Chem Soc 131:16832–16837

    Article  Google Scholar 

  • Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GHB, Evmenenko G, Wu SE, Chen SF, Liu CP (2007) Graphene − silica composite thin films as transparent conductors. Nano Lett 7:1888–1892

    Article  Google Scholar 

  • Wiener H (1947) Structural determination of the paraffin boiling points. J Am Chem Soc 69:17–20

    Article  Google Scholar 

  • Winkler P (1984) Isometric embedding in products of complete graph. Discret Appl Math 7:221–225

    Article  Google Scholar 

  • Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, Fan S, Li Q, Jiang K (2009) Controlled fabrication of high − quality carbon nanoscrolls from monolayer graphene. Nano Lett 9:2565–2570

    Article  Google Scholar 

  • Yu DS, Dai LM (2010) Self − assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470

    Article  Google Scholar 

Download references

Acknowledgments

MVD acknowledges the financial support offered by project PN-II-ID-PCE-2011-3-0346. Thanks are addressed to Professor Davide Proserpio, Universita degli Studi di Milano, Italy, for crystallographic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Gholaminezhad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gholaminezhad, F., Diudea, M.V. (2016). Graphene Derivatives: Carbon Nanocones and CorSu Lattice: A Topological Approach. In: Ashrafi, A., Diudea, M. (eds) Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-31584-3_9

Download citation

Publish with us

Policies and ethics