Skip to main content

Cluj Polynomial in Nanostructures

  • Chapter
  • First Online:
  • 542 Accesses

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 9))

Abstract

Cluj polynomial, developed in 2009–2010 in Cluj, Romania, counts the vertex proximities in a connected graph. Definitions and relations with other polynomials and topological indices are given. Within this chapter, Cluj and related polynomials are computed in several 3D nanostructures and crystal networks and analytical formulas as well as examples are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi M, Murata Y, Okada I, Yoshikawa S (2003) Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells. J Electrochem Soc 150:488–493

    Article  Google Scholar 

  • Alipour MA, Ashrafi AR (2009) A numerical method for computing the Wiener index of one-heptagonal carbon nanocone. J Comput Theor Nanosci 6:1204–1207

    Article  Google Scholar 

  • Ashrafi AR, Ghorbani M, Jalali M (2008) The vertex PI and Szeged indices of an infinite family of fullerenes. J Theor Comput Chem 7:221–231

    Article  Google Scholar 

  • Diudea MV (1997a) Cluj matrix CJu: source of various graph descriptors. MATCH Commun Math Comput Chem 35:169–183

    Google Scholar 

  • Diudea MV (1997b) Cluj matrix invariants. J Chem Inf Comput Sci 37:300–305

    Article  Google Scholar 

  • Diudea MV (1999) Valencies of property. Croat Chem Acta 72:835–851

    Google Scholar 

  • Diudea MV (ed) (2005) Nanostructures, Novel Architecture. Nova, New York

    Google Scholar 

  • Diudea MV (2009) Cluj polynomials. J Math Chem 45:295–308

    Article  Google Scholar 

  • Diudea MV (2010a) Counting polynomials in partial cubes. In: Gutman I, Furtula B (eds) Novel molecular structure descriptors-theory and applications I. Univ Kragujevac, Kragujevac, pp 191–215

    Google Scholar 

  • Diudea MV (2010b) Counting polynomials and related indices by edge cutting procedures. In: Gutman I, Furtula B (eds) Novel molecular structure descriptors-theory and applications II. Univ Kragujevac, Kragujevac, pp 57–78

    Google Scholar 

  • Diudea MV, Katona G (1999) Molecular topology of dendrimers, in: G A Newkome Ed. Adv Dendritic Macromol 4:135–201

    Article  Google Scholar 

  • Diudea MV, Klavžar S (2010) Omega polynomial revisited. Acta Chem Sloven 57:565–570

    Google Scholar 

  • Diudea MV, Nagy CL (2007) Periodic Nanostructures. Springer, Dordrecht

    Book  Google Scholar 

  • Diudea MV, Ursu O (2003) Layer matrices and distance property descriptors. Indian J Chem 42A:1283–1294

    Google Scholar 

  • Diudea MV, Parv B, Gutman I (1997) Detour-Cluj matrix and derived invariants. J Chem Inf Comput Sci 37:1101–1108

    Article  Google Scholar 

  • Diudea MV, Gutman I, Jäntschi L (2002) Molecular Topology. Nova, New York

    Google Scholar 

  • Diudea MV, Florescu MS, Khadikar PV (2006) Molecular Topology and Its Applications. Eficon, Bucharest

    Google Scholar 

  • Diudea MV, Vizitiu AE, Janežič D (2007) Cluj and related polynomials applied in correlating studies. J Chem Inf Model 47:864–874

    Article  Google Scholar 

  • Diudea MV, Cigher S, John PE (2008) Omega and related counting polynomials. MATCH Commun Math Comput Chem 60:237–250

    Google Scholar 

  • Diudea MV, Ilić A, Ghorbani M, Ashrafi AR (2010a) Cluj and PIv polynomials. Croat Chem Acta 83:283–289

    Google Scholar 

  • Diudea MV, Dorosti N, Iranmanesh A (2010b) Cluj CJ polynomial and indices in a dendritic molecular graph. Carpath J Math 4:247–253

    Google Scholar 

  • Dorosti N, Iranmanesh A, Diudea MV (2009) Computing the Cluj index of dendrimer nanostars. MATCH Commun Math Comput Chem 62:389–395

    Google Scholar 

  • Du GH, Chen Q, Che RC, Yuan ZY, Peng LM (2001) Preparation and Structure Analysis of Titanium Oxide Nanotubes. Appl Phys Lett 79:3702–3704

    Article  Google Scholar 

  • Ebbesen TW (1998) Cones and tubes: geometry in the chemistry of carbon. Acc Chem Res 31:558–566

    Article  Google Scholar 

  • Enyashin AN, Seifert G (2005) Structure stability and electronic properties of TiO2 nanostructures. Phys Stat Sol 242:1361–1370

    Article  Google Scholar 

  • Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334

    Article  Google Scholar 

  • Grimes CA, Ong KG, Varghese OK, Yang X, Mor G, Paulose M, Dickey EC, Ruan C, Pishko MV, Kendig JW, Mason AJ (2003) A Sentinel Sensor Network for Hydrogen Sensing. Sensors 3:69–82

    Article  Google Scholar 

  • Gutman I (1994) A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes NY 27:9–15

    Google Scholar 

  • Gutman I, Klavžar S (1995) An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons. J Chem Inf Comput Sci 35:1011–1014

    Article  Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading

    Google Scholar 

  • Hecht S, Frechet JMJ (2001) Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science. Angew Chem Int Ed 40:74–91

    Article  Google Scholar 

  • Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411–1413

    Article  Google Scholar 

  • Ilić A (2010) On the extremal graphs with respect to the vertex PI index. Appl Math Lett 23:1213–1217

    Article  Google Scholar 

  • Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem 9:2971–2972

    Article  Google Scholar 

  • Imai H, Matsuta M, Shimizu K, Hirashima N, Negishi N (2002) Morphology transcription with TiO2 using chemical solution growth and its application for photocatalysts. Solid State Ion 151:183–187

    Article  Google Scholar 

  • Ivanovskaya VV, Enyashin AN, Ivanovskii AL (2003) Electronic structure of single-walled TiO2 and VO2 nanotubes. Mendeleev Comm 13:5–7

    Article  Google Scholar 

  • Ivanovskaya VV, Enyashin AN, Ivanovskii AL (2004) Nanotubes and fullerene-like molecules based on TiO2 and ZrS2: Electronic structure and chemical bond Russ. J Inorg Chem 49:244–251

    Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  Google Scholar 

  • Khadikar PV (2000) On a novel structural descriptor PI. Nat Acad Sci Lett 23:113–118

    Google Scholar 

  • Khalifeh MH, Yousefi-Azari H, Ashrafi AR (2008a) Vertex and edge PI indices of Cartesian product graphs. Discret Appl Math 156:1780–1789

    Article  Google Scholar 

  • Khalifeh MH, Yousefi-Azari H, Ashrafi AR (2008b) A matrix method for computing Szeged and vertex PI indices of join and composition of graphs. Linear Algebra Appl 429:2702–2709

    Article  Google Scholar 

  • Klavžar S (2008) A brid’s eye view of the cut method and a survey of its applications in chemical graph theory. MATCH Commun Math Comput Chem 60:255–274

    Google Scholar 

  • Kobayashi S, Hanabusa K, Hamasaki N, Kimura M, Shirai H (2000) Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chem Mater 12:1523–1525

    Article  Google Scholar 

  • Krishnan A, Dujardin E, Treacy MMJ, Hugdahl J, Lynum S, Ebbesen TW (1997) Graphitic cones and the nucleation of curved carbon surfaces. Nature 388:451–454

    Article  Google Scholar 

  • Lakshmi BB, Dorhout PK, Martin CR (1997) Sol–gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–872

    Article  Google Scholar 

  • Li XH, Liu WM, Li HL (2003) Template synthesis of well-aligned titanium dioxide nanotubes. Appl Phys A 80:317–320

    Article  Google Scholar 

  • Lin CH, Chien SH, Chao JH, Sheu CY, Cheng YC, Huang YJ, Tsai CH (2002) The synthesis of sulfated titanium oxide nanotubes. Catal Lett 80:153–159

    Article  Google Scholar 

  • Liu SM, Gan LM, Liu LH, Zhang WD, Zeng HC (2002) Synthesis of single-crystalline TiO2 nanotubes. Chem Mater 14:1391–1397

    Article  Google Scholar 

  • Mansour T, Schork M (2009) The vertex PI index and Szeged index of bridge graphs. Discr Appl Math 157:1600–1606

    Article  Google Scholar 

  • Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588–2593

    Article  Google Scholar 

  • Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room − temperature TiO2 − nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    Article  Google Scholar 

  • Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods − anisotropic modules for a future nanotechnology. Angew Chem Int Ed 41:2446–2461

    Article  Google Scholar 

  • Peng T, Yang H, Chang G, Dai K, Hirao K (2004) Synthesis of bamboo-shaped TiO2 nanotubes in nanochannels of porous aluminum oxide membrane. Chem Lett 33:336–337

    Article  Google Scholar 

  • Rao CNR, Nath M (2003) Inorganic nanotubes. Dalton Trans 1:1–24

    Article  Google Scholar 

  • Seo DS, Lee JK, Kim H (2001) Preparation of nanotube − shaped TiO2 powder. J Cryst Growth 229:428–432

    Article  Google Scholar 

  • Shi YL, Zhang XG, Li HL (2002) Liquid phase deposition templates synthesis of nanostructures of anatase titania. Mater Sci Engin A 333:239–242

    Article  Google Scholar 

  • Sun J, Gao L, Zhang Q (2003) TiO2 tubes synthesized by using ammonium sulfate and carbon nanotubes as templates. J Mater Sci Lett 22:339–341

    Article  Google Scholar 

  • Tenne R (2002) Inorganic Nanotubes and Fullerene-Like Materials. Chem Eur J 8:5296–5304

    Article  Google Scholar 

  • Ursu O, Diudea MV (2005) TOPOCLUJ software program. Babes-Bolyai University, Cluj

    Google Scholar 

  • Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC (2003a) Crystallization and high − temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18:156–165

    Article  Google Scholar 

  • Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003b) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  Google Scholar 

  • Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003c) Hydrogen sensing using titania nanotubes. Sens Actuators B 93:338–344

    Article  Google Scholar 

  • Vizitiu AE, Diudea MV (2006) Conetori of high genera. Studia Univ Babes-Bolyai 51(1):39–48

    Google Scholar 

  • Vizitiu AE, Diudea MV (2008) Omega and Theta polynomials in conical nanostructures. MATCH Commun Math Comput Chem 60:927–933

    Google Scholar 

  • Vizitiu AE, Diudea MV (2009) Cluj polynomial description of TiO2 nanostructures. Studia Univ Babes Bolyai 54(1):173–180

    Google Scholar 

  • Wang YQ, Hu GQ, Duan XF, Sun HL, Xue QK (2002) Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett 365:427–431

    Article  Google Scholar 

  • Wang W, Varghese OK, Paulose M, Grimes CA (2003) Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates. J Mater Res 18:2756–2759

    Article  Google Scholar 

  • Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  Google Scholar 

  • Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283

    Article  Google Scholar 

  • Zhang S, Zhou J, Zhang Z, Du Z, Vorontsov AV, Jin Z (2000) Morphological structure and physicochemical properties of nanotube TiO2. Chin Sci Bull 45:1533–1536

    Article  Google Scholar 

  • Zhang M, Bando Y, Wada K (2001) Sol–gel template preparation of TiO2 nanotubes and nanorods. J Mater Sci Lett 20:167–170

    Article  Google Scholar 

  • Zhou Y, Li H, Koltypin Y, Hacohen YR, Gedanken A (2001) Sonochemical synthesis of titania whiskers and nanotubes. Chem Commun 24:2616–2617

    Article  Google Scholar 

  • Zhou Y, Cao L, Zhang F, He B, Li H (2003) Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J Electrochem Soc 150A:1246–1249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea V. Diudea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diudea, M.V., Saheli, M. (2016). Cluj Polynomial in Nanostructures. In: Ashrafi, A., Diudea, M. (eds) Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-31584-3_8

Download citation

Publish with us

Policies and ethics