Advertisement

Topological Symmetry of Multi-shell Clusters

  • Mircea V. DiudeaEmail author
  • Atena Parvan-Moldovan
  • Fatemeh Koorepazan-Moftakhar
  • Ali Reza Ashrafi
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

Symmetry is an intrinsic property of the organized matter. Topological symmetry is referred to the maximum possible symmetry achievable by a given molecular structure; it can be performed either by permutations on the adjacency matrix of its associate graph or by calculating the values of some topological indices. The equivalence classes of substructures of some multi-shell clusters, with icosahedral and octahedral symmetry, designed by the aid of operations on maps, were solved by using a topological index of centrality, computed on the layer matrix of rings surrounding the vertices in the molecular graph, and compared with the results of matrix permutation. A centrality order of vertices in multi-shell clusters is given. The design of multi-shell clusters was performed by our original CVNET and NanoStudio software programs.

Keywords

Equivalence Class Molecular Graph Topological Index Centrality Centrality Octahedral Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The third and fourth authors are partially supported by the University of Kashan under grant no 464092/3.

References

  1. Ashrafi AR, Kooperazan-Moftakhar F, Diudea MV, Stefu M (2013) In: Diudea MV, Nagy CL (eds) Diamond and related nanostructures. Springer, Dordrecht/Heidelberg/New York/London, pp 321–333CrossRefGoogle Scholar
  2. Breza J, Kadlečikova M, Vojs M, Michalka M, Vesely M, Danis T (2004) Diamond icosahedron on a TiN-coated steel substrate. Microelectron J 35:709–712CrossRefGoogle Scholar
  3. Coxeter HSM (1934) Discrete groups generated by reflections. Ann of Math (2) 35(3):588–621CrossRefGoogle Scholar
  4. Diudea MV (1994) Layer matrices in molecular graphs. J Chem Inf Comput Sci 34:1064–1071CrossRefGoogle Scholar
  5. Diudea MV (2003) Capra-a leapfrog related operation on maps. StudiaUniv“Babes-Bolyai” Chemia 48(2):3–7Google Scholar
  6. Diudea MV (2005) Nanoporous carbon allotropes by septupling map operations. J Chem Inf Model 45:1002–1009CrossRefGoogle Scholar
  7. Diudea MV (2010) Nanomolecules and Nanostructures – Polynomials and Indices. MCM No 10, University of Kragujevac, SerbiaGoogle Scholar
  8. Diudea MV (2013) Quasicrystals, between spongy and full space filling. In: Diudea MV, Nagy CL (eds) Diamond and related nanostructures. Springer, Dordrecht/Heidelberg/New York/London, pp 333–383CrossRefGoogle Scholar
  9. Diudea MV (2015) 4D-Octahedral structures. Int J Chem Model (accepted)Google Scholar
  10. Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  11. Diudea MV, Nagy CL (2013) Diamond and related nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  12. Diudea MV, Ursu O (2003) Layer matrices and distance property descriptors. Indian J Chem 42A:1283–1294Google Scholar
  13. Diudea MV, Stefu M, John PE, Graovac A (2006) Generalized operations on maps. Croat Chem Acta 79:355–362Google Scholar
  14. Euler L (1758) Elementa doctrinae solidorum. Novi Comm Acad Scient Imp Petrop 4:109–160Google Scholar
  15. Hungerford TW (1980) Algebra, graduate texts in mathematics. Reprint of the 1974 original, vol 73. Springer, New York/BerlinGoogle Scholar
  16. Koorepazan-Moftakhar F, Pîrvan-Moldovan A, Diudea MV (2015) Topological symmetry of multi-shell clusters with octahedral symmetry. Int J Chem Model 6:231–239Google Scholar
  17. Nagy CL, Diudea MV (2009) Nano-studio software. Babes-Bolyai University, ClujGoogle Scholar
  18. Parvan-Moldovan A, Kooperazan-Moftakhar F, Diudea MV (2014) Topological symmetry of multi-shell icosahedral clusters. Studia Univ “Babes-Bolyai” Chemia 59(3):103–108Google Scholar
  19. Pisanski T, Randić M (2000) Bridges between geometry and graph theory. Geometry at work. MAA Notes 53:174–194Google Scholar
  20. Samson S (1968) Structural chemistry and molecular biology. In: Rich A, Davidson N (eds) Structural chemistry and molecular biology. Freeman, San Francisco, pp 68–717Google Scholar
  21. Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich (Reprinted in: Schläfli Ludwig, 1814–1895, Gesammelte Mathematische Abhandlungen, Band 1:167–387, Birkhäuser Verlag, Basel, 1950 (in German)Google Scholar
  22. Stefu M, Diudea MV (2005) CageVersatile_CVNET software program. Babes-Bolyai Univ, ClujGoogle Scholar
  23. The GAP Team (2014) GAP − Groups, Algorithms, Programming – a system for computational discrete algebra, GAP 4.7.5 release. http://www.gap-system.org

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mircea V. Diudea
    • 1
    Email author
  • Atena Parvan-Moldovan
    • 1
  • Fatemeh Koorepazan-Moftakhar
    • 2
    • 3
  • Ali Reza Ashrafi
    • 2
    • 3
  1. 1.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of Nanocomputing, Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  3. 3.Department of Pure Mathematics, Faculty of Mathematical SciencesUniversity of KashanKashanIran

Personalised recommendations