Advertisement

An Algebraic Modification of Wiener and Hyper–Wiener Indices and Their Calculations for Fullerenes

  • Fatemeh Koorepazan-Moftakhar
  • Ali Reza AshrafiEmail author
  • Ottorino Ori
  • Mihai V. Putz
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

A molecular graph is a graph in which vertices are atoms and edges are chemical bonds. A graph is called 3-connected, if there does not exist two vertices whose removal disconnects the graph. A fullerene graph is a cubic, planar, and 3-connected whose faces are all pentagons or hexagons. A fullerene is a molecule, that is, its molecular graph is a fullerene graph. In 1991, Graovac and Pisanski (1991) proposed an algebraic modification of the Wiener index of a graph by considering its automorphism group. In this chapter, an algebraic modification for the hyper–Wiener index is presented. These quantities will be computed for some classes of fullerenes.

Keywords

Wiener index Molecular graph Fullerene 

Notes

Acknowledgment

The first and second authors are partially supported by the University of Kashan under Grant No. 464092/2.

References

  1. Ashrafi AR, Koorepazan-Moftakhar F (2014) Fullerenes and capped nanotubes: applications and geometry. In: Aliofkhazraei M (ed) Handbook of functional nanomaterials, volume 3, application and development. Nova Science Publisher, Inc, New York, pp 225–237Google Scholar
  2. Ashrafi AR, Sabaghian-Bidgoli H (2009) A numerical method for computing PI index of fullerene molecules containing carbon atoms. J Comput Theor Nanosci 6:1706–1708CrossRefGoogle Scholar
  3. Ashrafi AR, Ghorbani M, Jalali M (2008) The vertex PI and Szeged indices of an infinite family of fullerenes. J Theor Comput Chem 7:221–231CrossRefGoogle Scholar
  4. Ashrafi AR, Ghorbani M, Jalali M (2009) Study of IPR fullerenes by counting polynomials. J Theor Comput Chem 8:451–457CrossRefGoogle Scholar
  5. Ashrafi AR, Cataldo F, Iranmanesh A, Ori O (eds) (2013) Topological modelling of nanostructures and extended systems, carbon materials: chemistry and physics, vol 7. Springer Science + Business Media, DordrechtGoogle Scholar
  6. Bosma W, Cannon J, Playoust C (1997) The magma algebra system. I. The user language. J Symb Comput 24:235–265CrossRefGoogle Scholar
  7. Cataldo F, Graovac A, Ori O (eds) (2011) The mathematics and topology of fullerenes. Carbon materials: chemistry and physics, vol 4. Springer Science + Business Media B.V, DordrechtGoogle Scholar
  8. Diudea MV (1996a) Walk numbers eWM: Wiener numbers of higher rank. J Chem Inf Comput Sci 36:535–540CrossRefGoogle Scholar
  9. Diudea MV (1996b) Wiener and hyper–Wiener numbers in a single matrix. J Chem Inf Comput Sci 36:833–836CrossRefGoogle Scholar
  10. Diudea MV (1997) Cluj matrix invariants. J Chem Inf Comput Sci 37:300–305CrossRefGoogle Scholar
  11. Diudea MV, Katona G, Pârv B (1997) Delta number, Dde, of dendrimers. Croat Chem Acta 70:509–517Google Scholar
  12. Diudea MV, Ursu O, Nagy LCS (2002) TOPOCLUJ. Babes − Bolyai University, ClujGoogle Scholar
  13. Djafari S, Koorepazan-Moftakhar F, Ashrafi AR (2013) Eccentric sequences of two infinite classes of fullerenes. J Comput Theor Nanosci 10:2636–2638CrossRefGoogle Scholar
  14. Firouzian S, Faghani M, Koorepazan-Moftakhar F, Ashrafi AR (2014) The hyper-Wiener and modified hyper-Wiener indices of graphs with an application on fullerenes. Studia Universitatis Babes − Bolyai Chemia 59:163–170Google Scholar
  15. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Oxford University Press, OxfordGoogle Scholar
  16. Graovac A, Pisanski T (1991) On the Wiener index of a graph. J Math Chem 8:53–62CrossRefGoogle Scholar
  17. Graver JE (2005) Catalog of all fullerenes with ten or more symmetries, graphs and discovery, DIMACS ser. discrete math theoret comput sci, 69. American Mathematical Society, Providence, pp 167–188Google Scholar
  18. Gutman I, Šoltés L (1991) The range of the Wiener index and its mean isomer degeneracy. Z Naturforsch 46a:865–868Google Scholar
  19. Gutman I, Linert W, Lukovits I, Dobrynin AA (1997) Trees with extremal hyper–Wiener index: mathematical basis and chemical applications. J Chem Inf Comput Sci 37:349–354CrossRefGoogle Scholar
  20. HyperChem package Release 7.5 for Windows (2002) Hypercube Inc., Florida, USAGoogle Scholar
  21. Khalifeh MH, Yousefi–Azari H, Ashrafi AR (2008) The hyper-Wiener index of graph operations. Comput Math Appl 56:1402–1407CrossRefGoogle Scholar
  22. Klein DJ, Lukovits I, Gutman I (1995) On the definition of the hyper–Wiener index for cycle–containing structures. J Chem Inf Comput Sci 35:50–52CrossRefGoogle Scholar
  23. Koorepazan-Moftakhar F, Ashrafi AR (2013) Symmetry and PI index of C60+12n fullerenes. J Comput Theor Nanosci 10:2484–2486CrossRefGoogle Scholar
  24. Koorepazan-Moftakhar F, Ashrafi AR (2014) Fullerenes: topology and symmetry. In: Gutman I (ed) Topics in chemical graph theory. University of Kragujevac and Faculty of Science, Kragujevac, pp 163–176Google Scholar
  25. Koorepazan-Moftakhar F, Ashrafi AR (2015) Distance under symmetry. MATCH Commun Math Comput Chem 74(2):259–272Google Scholar
  26. Koorepazan-Moftakhar F, Ashrafi AR, Mehranian Z (2014) Symmetry and PI polynomials of C50+10n fullerenes. MATCH Commun Math Comput Chem 71:425–436Google Scholar
  27. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  28. Myrvold W, Bultena B, Daugherty S, Debroni B, Girn S, Minchenko M, Woodcock J, Fowler PW (2007) FuiGui: a graphical user interface for investigating conjectures about fullerenes. MATCH Commun Math Comput Chem 58:403–422Google Scholar
  29. Ori O, Cataldo F, Iglesias-Groth S, Graovac A (2010) Topological modeling of C60H36 hydrides. In: Cataldo F, Iglesias-Groth S (eds) Fulleranes: the hydrogenated fullerenes. Springer, Dordrecht/London, pp 251–272CrossRefGoogle Scholar
  30. Schwerdtfeger P, Wirz L, Avery J (2013) Program fullerene: a software package for constructing and analyzing structures of regular fullerenes. J Comput Chem 34:1508–1526CrossRefGoogle Scholar
  31. The GAP Team (1995) GAP, Groups, Algorithms and Programming. Lehrstuhl De für Mathematik. RWTH, AachenGoogle Scholar
  32. Wiener HJ (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fatemeh Koorepazan-Moftakhar
    • 1
    • 2
  • Ali Reza Ashrafi
    • 1
    • 2
    Email author
  • Ottorino Ori
    • 3
    • 4
  • Mihai V. Putz
    • 5
    • 6
  1. 1.Department of Nanocomputing, Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Department of Pure Mathematics, Faculty of Mathematical SciencesUniversity of KashanKashanIran
  3. 3.Actinium Chemical ResearchRomeItaly
  4. 4.Laboratory of Computational and Structural Physical-Chemistry for Nanosciences and QSAR, Department of Biology-Chemistry, Faculty of Chemistry, Biology, GeographyWest University of TimişoaraTimişoaraRomania
  5. 5.Laboratory of Computational and Structural Physical-Chemistry for Nanosciences and QSAR, Department of Biology-Chemistry, Faculty of Chemistry, Biology, GeographyWest University of TimişoaraTimişoaraRomania
  6. 6.Laboratory of Renewable Energies-PhotovoltaicsR&D National Institute for Electrochemistry and Condensed MatterTimişoaraRomania

Personalised recommendations