Advertisement

A Lower Bound for Graph Energy of Fullerenes

  • Morteza Faghani
  • Gyula Y. Katona
  • Ali Reza AshrafiEmail author
  • Fatemeh Koorepazan-Moftakhar
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

A molecular graph is a graph in which vertices are atoms and edges are molecular bonds. These graphs are good mathematical models for molecules. Suppose G is a molecular graph with adjacency matrix A. The graph energy G is defined as the sum of the absolute values of the eigenvalues of A. The aim of this chapter is to describe a method for computing energy of fullerenes. We apply this method for computing a lower bound for energy of an infinite class of fullerene graphs with exactly 12n vertices. Our method is general and can be extended to other class of fullerene graphs.

Keywords

Centrosymmetric matrix Fullerene graph Energy 

References

  1. Cantoni A, Buter P (1976) Eigenvalues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra Appl 13:275–288CrossRefGoogle Scholar
  2. Djafari S, Koorepazan–Moftakhar F, Ashrafi AR (2013) Eccentric sequences of two infinite classes of fullerenes. J Comput Theor Nanosci 10:2636–2638CrossRefGoogle Scholar
  3. Fan K (1951) Maximum properties for the eigenvalues of completely continuous operators. Proc Natl Acad Sci ASA 37:760–766CrossRefGoogle Scholar
  4. Fowler P W, Manolopoulos DE (2006) An Atlas of fullerenes. Oxford University Press, Oxford 1995, Dover, New York 2006Google Scholar
  5. Fowler PW, Myrvold W (2014) Most fullerenes have no centrosymmetric labelling. MATCH Commun Math Comput Chem 71:93–97Google Scholar
  6. Ghorbani M, Faghani M, Ashrafi AR, Heidari-Rad S, Graovac A (2014) An upper bound for energy of matrices associated to an infinite class of fullerenes. MATCH Commun Math Comput Chem 71:341–354Google Scholar
  7. Graovac A, Ori O, Faghani M, Ashrafi AR (2011) Distance property of fullerenes. Iran J Math Chem 2:99–107Google Scholar
  8. Gutman I (1978) The energy of a graph. Ber Math Statist Sekt Forschungszentrum (Graz) 103:1–22Google Scholar
  9. Gutman I (2001) The energy of a graph: old and new results. Algebraic combinatorics and applications (Gößweinstein 1999). Springer, Berlin, pp 196–211CrossRefGoogle Scholar
  10. Gutman I (2012) Bounds for all graph energies. Chem Phys Lett 528:72–74CrossRefGoogle Scholar
  11. Gutman I, Pavlović L (1999) The energy of some graphs with large number of edges. Bull Cl Sci Math Nat Sci Math 24:35–50Google Scholar
  12. Gutman I, Zare Firoozabadi S, de la Peña JA, Rada J (2007) On the energy of regular graphs. MATCH Commun Math Comput Chem 57:435–442Google Scholar
  13. Katona GY, Faghani M (2014) Centrosymmetric graphs and lower bound for graph energy of fullerene. Discuss Math Graph Theory 34:751–768CrossRefGoogle Scholar
  14. Koorepazan–Moftakhar F, Ashrafi A R, Ori O and Putz M V (2014) Sphericality of some classes of fullerenes measured by topology. In: Shannon BE (ed) Fullerenes: chemistry, natural sources and technological applications, Nova Science Publishers, Inc, New York, p. 285–304Google Scholar
  15. Li X, Shi Y, Gutman I (2012) Graph energy. Springer, New YorkCrossRefGoogle Scholar
  16. Liu ZY (2003) Some properties of centrosymmetric matrices. Appl Math Comput 141:297–306Google Scholar
  17. Nikiforov V (2007) The energy of graphs and matrices. J Math Anal Appl 326:1472–1475CrossRefGoogle Scholar
  18. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Morteza Faghani
    • 1
  • Gyula Y. Katona
    • 2
    • 3
  • Ali Reza Ashrafi
    • 5
    • 4
    Email author
  • Fatemeh Koorepazan-Moftakhar
    • 4
    • 5
  1. 1.Department of MathematicsPayam-e Noor UniversityTehranIran
  2. 2.Department of Computer Science and Information TheoryBudapest University of Technology and EconomicsBudapestHungary
  3. 3.MTA-ELTE Numerical Analysis and Large NetworksResearch GroupBudapestHungary
  4. 4.Department of Nanocomputing, Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  5. 5.Department of Pure Mathematics, Faculty of Mathematical SciencesUniversity of KashanKashanIran

Personalised recommendations