Advertisement

Enhancing Gauge Symmetries Via the Symplectic Embedding Approach

  • Salman Abarghouei Nejad
  • Majid MonemzadehEmail author
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

One of the best ways to increase the fundamental symmetries of the physical systems with singular Lagrangian is the gauging of those models with the help of symplectic formalism of constrained systems. The main idea of this approach is based on the embedding of the model in an extended phase-space. After the gauging process had done, we can obtain generators of gauge transformations of the model.

Keywords

Constrained Systems Symplectic Formalism Gauge Symmetries 

References

  1. Abarghouei Nejad S, Dehghani M, Monemzadeh M (2014) Gauging the relativistic particle model on the noncommutative plane. arXiv:hep-th/1507.02329Google Scholar
  2. Abreu EMC, Neto JA, Mendes ACR, Neves C, Oliveira W (2012) Obtaining gauge invariant actions via symplectic embedding formalism. Ann Phys 524(8):434–455CrossRefGoogle Scholar
  3. Abreu EMC, Mendes ACR, Neves C, Oliveira W, Silva RCN (2013) QCD gauge symmetries through Faddeev–Jackiw symplectic method. JHEP 6:093, front matter + 10 ppGoogle Scholar
  4. Batalin IA, Fradkin ES (1987) Operational quantization of dynamical systems subject to second class constraints. Nucl Phys B 279:514–528CrossRefGoogle Scholar
  5. Batalin IA, Tyutin IV (1991) Existence theorem for the effective gauge algebra in the generalized canonical formalism with abelian conversion of second-class constraints. Inter J Mod Phys A 6(18):3255–3282CrossRefGoogle Scholar
  6. Batalin IA, Vilkovisky GA (1981) Gauge algebra and quantization. Phys Lett B 102(1):27–31CrossRefGoogle Scholar
  7. Batalin IA, Fradkin ES, Fradkina TE (1989) Another version for operatorial quantization of dynamical systems with irreducible constraints. Nucl Phys B 314(1):158–174CrossRefGoogle Scholar
  8. Becchi C, Rouet A, Stora R (1976) Renormalization of gauge theories. Ann Phys 98(2):287–321CrossRefGoogle Scholar
  9. Bergmann PG, Goldberg I (1955) Dirac bracket transformations in phase space. Phys Rev 98(2):531–538CrossRefGoogle Scholar
  10. Dirac PAM (1950) Generalized Hamiltonian dynamics. Can J Math 2:129–148CrossRefGoogle Scholar
  11. Dirac PAM (1967) Lectures on quantum mechanics. Second printing of the 1964 original. Belfer Graduate School of Science monographs series, 2. Belfer Graduate School of Science, New York; produced and distributed by Academic Press, Inc, New YorkGoogle Scholar
  12. Ebrahimi AS, Monemzadeh M (2014) Mathematical feature of gauge theory. Inter J Theor Phys 53(12):4121–4131CrossRefGoogle Scholar
  13. Faddeev L, Jackiw R (1988) Hamiltonian reduction of unconstrained and constrained systems. Phys Rev Lett 60(17):1692–1694CrossRefGoogle Scholar
  14. Govaerts J (1990) Hamiltonian reduction of first-order actions. Inter J Mod Phys A 5(18):3625–3640CrossRefGoogle Scholar
  15. Henneaux M, Teiltelboim C (1992) Quantization of gauge system. Princeton University Press, PrincetonGoogle Scholar
  16. Henneaux M, Teitelboim C, Zanelli J (1990) Gauge invariance and degree of freedom count. Nucl Phys B 332(1):169–188CrossRefGoogle Scholar
  17. Jackiw R (1994) (Constrained) Quantization without tears. Constraint theory and quantization methods (Montepulciano, 1993). World Sci Publ, River Edge, pp 163–175Google Scholar
  18. Kim YW, Lee CY, Kim SK (2004) Symplectic embedding of amassive vector–tensor theory with topological coupling. Eur Phys J C 34:383–392CrossRefGoogle Scholar
  19. Monemzadeh M, Ebrahimi AS (2012) Embedding of noncommutative massive QED. Mod Phys Lett A 27(14):5163–5176CrossRefGoogle Scholar
  20. Monemzadeh M, Ebrahimi AS, Sramadi S, Dehghani M (2014) Gauging of non–abelian Chern–Simons model. Mod Phys Lett A 29(5):1450028, 9 ppCrossRefGoogle Scholar
  21. Montani H (1993) Symplectic analysis of constrained systems. Inter J Mod Phys A 8(24):4319–4337CrossRefGoogle Scholar
  22. Neto JA, Neves C, Oliveira W (2001) Gauging the SU(2) Skyrme model. Phys Rev D 63(8):5018–5027CrossRefGoogle Scholar
  23. Paschalis JE, Porfyriadis PI (1996) BFV analysis of the U-em(1) Gauged SU(3) WZW model and the Faddeev-Jackiw approach. THES-TP 96/07Google Scholar
  24. Shirzad A, Mojiri M (2001) Constraint structure in modified Faddeev-Jackiw method. Mod Phys Lett A 16(38):2439–2448CrossRefGoogle Scholar
  25. Shirzad A, Monemzadeh M (2004) The BFT method with chain structure. Phys Lett B 584(1–2):220–224CrossRefGoogle Scholar
  26. Shirzad A, Monemzadeh M (2005) BFT method for mixed constrained systems and Chern-Simons theory. Phys Rev D 72:045004CrossRefGoogle Scholar
  27. Shirzad A, Shabani Moghadam M (1999) Explicit form of the gauge transformation generator in terms of constraints. J Phys A 32(46):8185–8195CrossRefGoogle Scholar
  28. Wess J, Zumino B (1971) Consequences of anomalous ward identities. Phys Lett 37B:95–97CrossRefGoogle Scholar
  29. Woodhouse NMJ (1992) Geometric quantization, 2nd edn, Oxford mathematical monographs. Oxford Science Publications/The Clarendon Press/Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Particle Physics and Gravity, Faculty of PhysicsUniversity of KashanKashanIran

Personalised recommendations