Skip to main content

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 9))

  • 544 Accesses

Abstract

Conserving the sp 2 hybridization of carbon atoms in tetrahedral arrangements is possible in both closed and opened nanostructures. Between the two classes, a structural relationship exists, and they can be easily transformed into each other to facilitate design of complex highly symmetric clusters. A classification of fullerenes with tetrahedral symmetry is here provided, and the corresponding zigzag and armchair tetrapodal nanotube junctions are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balaban AT, Bean DE, Fowler PW (2010) Patterns of ring current in coronene isomers. Acta Chim Slov 57:507–512

    Google Scholar 

  • Borštnik U, Hodošček M, Janežič D, Lukovits I (2005) Electronic structure properties of carbon nanotubes obtained by density functional calculations. Chem Phys Lett 411:384–388

    Article  Google Scholar 

  • Brinkmann G, Delgado Friedrichs O, Lisken S, Peeters A, Van Cleemput N (2010) CaGe – a virtual environment for studying some special classes of plane graphs – an update. MATCH Commun Math Comput Chem 63:533–552

    Google Scholar 

  • Campbell EEB, Fowler PW, Mitchell D, Zerbetto F (1996) Increasing cost of pentagon adjacency for larger fullerenes. Chem Phys Lett 250:544–548

    Article  Google Scholar 

  • Chen Z, Jiao H, Buhl M, Hirsch A, Thiel W (2001a) The 2(N + 1)2 rule for spherical aromaticity: further validation. J Mol Model 7:161–163

    Google Scholar 

  • Chen Z, Jiao H, Buhl M, Hirsch A, Thiel W (2001b) Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues. Theor Chem Accounts 106:352–363

    Article  Google Scholar 

  • Cheng W, Li QS, Tang AC (1999) Vibrational spectra of tetrahedral fullerenes. J Mol Spectrosc 193:1–6

    Article  Google Scholar 

  • Cyrański MK, Havenith RWA, Dobrowolski MA, Gray BR, Krygowski TM, Fowler PW, Jenneskens LW (2007) The phenalenyl motif: a magnetic chameleon. Chem Eur J 13:2201–2207

    Article  Google Scholar 

  • Diaz-Tendero S, Alcami M, Martin F (2003) Theoretical study of ionization potentials and dissociation energies of Cn q+ fullerenes (n = 50–60, q = 0, 1 and 2). J Chem Phys 119:5545–5557

    Article  Google Scholar 

  • Diaz-Tendero S, Martin F, Alcami M (2005) Structure and electronic properties of fullerenes C52 q+: is C52 2+ an exception to the pentagon adjacency penalty rule? ChemPhysChem 6:92–100

    Article  Google Scholar 

  • Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, Dordrecht

    Book  Google Scholar 

  • Diudea MV, Nagy CL (2012) C20-related structures: diamond D5. Diam Relat Mater 23:105–108

    Article  Google Scholar 

  • Diudea MV, Nagy CL (2013) Diamond D5. In: Diudea MV, Nagy CL (eds) Diamond and related nanostructures, vol 6, Carbon materials: chemistry and physics. Springer, Dordrecht, pp 91–106

    Chapter  Google Scholar 

  • Diudea MV, Szefler B (2012) Nanotube junctions and the genus of multi-tori. Phys Chem Chem Phys 14:8111–8115

    Article  Google Scholar 

  • Diudea MV, Nagy CL, Ilic A (2011) Diamond D5, a novel class of carbon allotropes. In: Putz MV (ed) Carbon bonding and structures, vol 5, Carbon materials: chemistry and physics. Springer, Dordrecht, pp 273–289

    Chapter  Google Scholar 

  • Diudea MV, Nagy CL, Bende A (2012) On diamond D5. Struct Chem 23:981–986

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  • Guo T, Diener MD, Chai Y, Alford MJ, Haufler RE, McClure SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Uranium stabilization of C28: a tetravalent fullerene. Science 257:1661–1664

    Article  Google Scholar 

  • Haddon RC (1990) Measure of nonplanarity in conjugated organic molecules: which structurally characterized molecule displays the highest degree of pyramidalization? J Am Chem Soc 112:3385–3389

    Article  Google Scholar 

  • Haddon RC (2001) Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to the σ bond angles. J Phys Chem A 105:4164–4165

    Article  Google Scholar 

  • Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in I h symmetrical fullerenes: the 2(N + 1)2 rule. Angew Chem Int Ed 39:3915–3917

    Article  Google Scholar 

  • Jahn H, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc R Soc A 161:220–235

    Article  Google Scholar 

  • Manolopoulos DE, Fowler PW (1992) Molecular graphs, point groups, and fullerenes. J Chem Phys 96:7603–7614

    Article  Google Scholar 

  • Nagy K, Nagy CL, Tasnadi E, Katona G, Diudea MV (2013) Hyper-diamonds and dodecahedral architectures by tetrapodal carbon nanotube junctions. Acta Chim Slov 60:1–4

    Google Scholar 

  • Noël Y, De La Pierre M, Zicovich-Wilson CM, Orlando R, Dovesi R (2014) Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: Insights from an ab initio hybrid DFT study. Phys Chem Chem Phys 16:13390–13401

    Article  Google Scholar 

  • Ray Dias J (1993) Fullerenes to benzenoids and the leapfrog algorithm. Chem Phys Lett 204:486–490

    Article  Google Scholar 

  • Romo-Herrera JM, Terrones M, Terrones H, Dag S, Meunier V (2007) Covalent 2D and 3D networks from 1D nanostructures: designing new materials. Nano Lett 7:570–576

    Article  Google Scholar 

  • Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  Google Scholar 

  • Schwerdtfeger P, Wirz L, Avery J (2013) Program fullerene – a software package for constructing and analyzing structures of regular fullerenes, version 4.4. J Comput Chem 34:1508–1526

    Article  Google Scholar 

  • Scuseria GE (1992) Negative curvature and hyperfullerenes. Chem Phys Lett 195:534–536

    Article  Google Scholar 

  • Tang AC, Huang FQ (1996) Electronic structures and stability rules of tetrahedral fullerenes. Chem Phys Lett 258:562–573

    Article  Google Scholar 

  • Terrones H, Terrones M (2003) Curved nanostructured materials. New J Phys 5:126.1–126.37

    Article  Google Scholar 

  • Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM (2002a) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505/1–075505/4

    Article  Google Scholar 

  • Terrones M, Charlier JC, Banhart F, Grobert N, Terrones H, Ajayan PM (2002b) Towards nanodevice fabrication: joining and connecting single-walled carbon nanotubes. New Diamond Front Carbon Technol 12:315–323

    Google Scholar 

  • Terrones M, Banhart F, Hernández E, Grobert N, Charlier JC, Terrones H, Ajayan PM (2003) In-situ welding of single-walled carbon nanotubes and melting of encapsulated metal clusters in carbon shells: theory and experiment. Microsc Microanal 9:320–321

    Google Scholar 

Download references

Acknowledgments

CL Nagy acknowledges the financial support offered by the Babes-Bolyai University through Grant for Young Researchers GTC_34050/2013.

K Nagy acknowledges the financial support of the Sectorial Operational Program for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the project number POSDRU/159/1.5/S/132400 with the title “Young successful researchers – professional development in an international and interdisciplinary environment”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba L. Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagy, C.L., Nagy, K., Diudea, M.V. (2016). Tetrahedral Nanoclusters. In: Ashrafi, A., Diudea, M. (eds) Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-31584-3_22

Download citation

Publish with us

Policies and ethics