Skip to main content

Counting Distance and Szeged (on Distance) Polynomials in Dodecahedron Nano-assemblies

  • Chapter
  • First Online:
Distance, Symmetry, and Topology in Carbon Nanomaterials

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 9))

  • 550 Accesses

Abstract

Six dodecahedron nano-assemblies, complexes with 5-, 6-, 12-, 15-, 24-, and 25-dodecahedron units, were constructed by HyperChem software and investigated. Two polynomials, namely, the counting distance polynomial and counting Szeged (on distance) polynomial, graph invariants encoding important properties of the investigated nano-assemblies, have been calculated; the counting polynomial roots were calculated for each investigated nano-assembly. Distinct patterns of polynomial roots were obtained for each of these polynomials, with similarities among dodecahedron congeners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An Y-P, Yang C-L, Wang M-S, Ma X-G, Wang D-H (2009) First-principles study of electronic transport properties of dodecahedrane C20H20 and its endohedral complex Li@C20H20. J Phys Chem C 113(35):15756–15760

    Article  Google Scholar 

  • Astakhov AM, Stepanov RS, Babushkin AY (1998) On the detonation parameters of octanitrocubane. Combust Explo Shock 34(1):85–87

    Article  Google Scholar 

  • Banfalvia G (2014) Dodecahedrane minibead polymers. RSC Adv 4:3003–3008

    Article  Google Scholar 

  • Bolboacă S, Jäntschi L (2007) How good the characteristic polynomial can be for correlations? Int J Mol Sci 8(4):335–345

    Article  Google Scholar 

  • Chen Z, Jiao H, Moran D, Hirsch A, Thiel W, von Ragué SP (2003) Structures and stabilities of endo- and exohedral dodecahedrane complexes (X@C20H20 and XC20H20, X = H+, H, N, P, C, Si, O+, S+). J Phys Chem A 107(12):2075–2079

    Article  Google Scholar 

  • Cross RJ, Saunders M, Prinzbach H (1999) Putting helium inside dodecahedrane. Org Lett 1(9):1479–1481

    Article  Google Scholar 

  • Devillers J, Balaban AT (eds) (2000) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, pp 96–97

    Google Scholar 

  • Diudea MV, Minailiuc OM, Katona G, Gutman I (1997) Szeged matrices and related numbers. MATCH Commun Math Comput Chem 35:129–143

    Google Scholar 

  • Dixon DA, Deerfield D (1981) The electronic structure of dodecahedrane and the nature of the central cavity. Chem Phys Lett 78(1):161–164

    Article  Google Scholar 

  • Eaton PE, Cole TW (1964a) Cubane. J Am Chem Soc 86(15):3157–3158

    Article  Google Scholar 

  • Eaton PE, Cole TW (1964b) The cubane system. J Am Chem Soc 86(5):962–964

    Article  Google Scholar 

  • Eremenko LT, Nesterenko DA (1997) Energetics of decomposition of polynitrocubanes (Analytical prediction). Chem Phys Rep 16:1675–1683

    Google Scholar 

  • Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):344–345

    Article  Google Scholar 

  • Friedlander P (1964) Chapter XIV: Platon als Atomphysiker. In: Friedlander P (ed) Platon, Vol I. Walter de Gruyter & Co, Berlin, pp 260–275

    Google Scholar 

  • Hopf H (2000) Classics in hydrocarbon chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Hosoya H (2013) Distance polynomial and the related counting polynomials. Croat Chem Acta 86(4):443–451

    Article  Google Scholar 

  • Jäntschi L (2000) CF matrices (§4.7) In: Jäntschi L (ed) Prediction of physical, chemical and biological properties using mathematical descriptors (in Romanian). PhD Thesis in Chemistry (PhD Advisor: Prof. Dr. Mircea V. DIUDEA). Cluj-Napoca, Babeş-Bolyai University

    Google Scholar 

  • Jäntschi L (2007) Characteristic and counting polynomials of nonane isomers. Academic Direct Publishing House (eISBN: 978-973-86211-3-8). Available at: http://ph.academicdirect.org/CCPNI_2007.pdf

  • Jäntschi L, Bolboacă SD (2009) Counting polynomials on regular iterative structures. Appl Med Inform 24(1–2):67–95

    Google Scholar 

  • Jäntschi L, Diudea MV (2009) Subgraphs of pair vertices. J Math Chem 45(2):364–371

    Article  Google Scholar 

  • Jäntschi L, Bolboacă SD, Furdui CM (2009) Characteristic and counting polynomials: modelling nonane isomers properties. Mol Simul 35(3):220–227

    Article  Google Scholar 

  • Jiménez-Vázquez HA, Tamariz J, Cross RJ (2001) Binding energy in and equilibrium constant of formation for the dodecahedrane compounds He@C20H20 and Ne@C20H20. J Phys Chem A 105(8):1315–1319

    Article  Google Scholar 

  • Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–35

    Article  Google Scholar 

  • Liu F-L (2004a) DFT study on a molecule C25H20 with a dodecahedrane cage and a pentaprismane cage sharing the same pentagon. J Mol Struct-Theochem 681(1–3):51–55

    Google Scholar 

  • Liu F-L (2004b) Theoretical study on the coplanar double-cage dodecahedrane C35H30. Phys Chem Chem Phys 6:906–909

    Article  Google Scholar 

  • Liu F-L, Zhao J-X, Xie Y, Dai L-H (2005a) Theoretical study of two C30H20 isomers with a dodecahedrane cage and two pentaprismane cages sharing two pentagons. Int J Quantum Chem 102:275–281

    Article  Google Scholar 

  • Liu F-L, Zhai Y-Q, Feng S, Guo W-L (2005b) DFT study on the molecule C40H30: two dodecahedrane cages linked by five carbon–carbon single bonds. J Mol Struct-Theochem 719(1–3):185–189

    Google Scholar 

  • MacGillivray LR, Atwood JL (1999) Structural classification and general principles for the design of spherical molecular hosts. Angew Chem 38(8):1018–1033

    Article  Google Scholar 

  • Maier G, Pfriem S (1978) Tetra-tert-butyltetrahedrane. Angew Chem 17(7):520–521

    Article  Google Scholar 

  • Maier G, Neudert J, Wolf O, Pappusch D, Sekiguchi A, Tanaka M, Matsuo T (2002) Tetrakis(trimethylsilyl) tetrahedrane. J Am Chem Soc 124(46):13819–13826

    Article  Google Scholar 

  • Moran D, Stahl F, Jemmis ED, Schaefer HF III, von Schleyer PR (2002) Structures, stabilities, and ionization potentials of dodecahedrane endohedral complexes. J Phys Chem A 106(20):5144–5154

    Article  Google Scholar 

  • Nemirowski A, Reisenauer HP, Schreiner PR (2006) Tetrahedrane-Dossier of an unknown. Chem Eur J 12:7411–7420

    Article  Google Scholar 

  • Pan VY (1997) Solving a polynomial equation: some history and recent progress. SIAM Rev 39:187–220

    Article  Google Scholar 

  • Paquette LA, Ternansky RJ, Balogh DW, Kentgen G (1983) Total synthesis of dodecahedrane. J Am Chem Soc 105(16):5446–5450

    Article  Google Scholar 

  • Sekiguchi A, Tanaka M (2003) Tetrahedranyllithium: synthesis, characterization, and reactivity. J Am Chem Soc 125(42):12684–12685

    Article  Google Scholar 

  • Ternansky RJ, Balogh DW, Paquette LA (1982) Dodecahedrane. J Am Chem Soc 104(16):4503–4504

    Article  Google Scholar 

  • Wahl F, Weiler A, Landenberger P, Sackers E, Voss T, Haas A, Lieb M, Hunkler D, Wörth J, Knothe L, Prinzbach H (2006) Towards perfunctionalized dodecahedranes-en route to C20 fullerene. Chem Eur J 12(24):6255–6267

    Article  Google Scholar 

  • Xiao H, Zhang J (2002) Theoretical prediction on heats of formation for polyisocyanocubanes. Sci China Ser B 45(1):21–29

    Article  Google Scholar 

  • Zhang M-X, Eaton PE, Gilardi R (2000) Hepta- and octanitrocubanes. Angew Chem Int Ed 39(2):401–404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorana D. Bolboacă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolboacă, S.D., Jäntschi, L. (2016). Counting Distance and Szeged (on Distance) Polynomials in Dodecahedron Nano-assemblies. In: Ashrafi, A., Diudea, M. (eds) Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-31584-3_21

Download citation

Publish with us

Policies and ethics