Advertisement

Bondonic Chemistry: Spontaneous Symmetry Breaking of the Topo-reactivity on Graphene

  • Mihai V. PutzEmail author
  • Ottorino OriEmail author
  • Mircea V. DiudeaEmail author
  • Beata Szefler
  • Raluca Pop
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

Bondonic chemistry promotes the modeling of chemical transformations by quantum particles of the chemical field, the so-called bondons, rather than by molecular wave function. Being a particle of chemical interaction, the bondon is necessarily a boson, here emerging from the chemical field by spontaneous symmetry breaking mechanism, following the Goldstone mechanism yet featuring the Higgs bosonic mass rising caring the electronic pair information by a bondon–ant–bondon (Feynman) coupling, eventually corresponding to the bonding–antibonding chemical realms of a given bonding. The present mechanism of bondonic mass is applied for describing the Stone–Wales topological defects on graphene, a 2D carbon material allowing electrons to unidirectionally interact in bosonic–bondonic formation; in this framework, the molecular topology and combined molecular topology–chemical reactivity approaches are unfolded showing that bondons fulfill quantum entangled behavior, according to which (1) their masses increase when chemical reactivity information combines the topological information and (2) their masses increase with increasing the distance of their electronic pairing Feynman interaction.

Keywords

Graphene Spontaneous symmetry breaking (SSB) Chemical bonding Bondon Topological index Quantum chemical computation Electronegativity Chemical hardness 

Notes

Acknowledgments

MVP thanks R&D National Institute for Electrochemistry and Condensed Matter (INCEMC), Timișoara, for the optimal framework offered and to Romanian National Authority for Scientific Research and Innovation (ANCSI) for the funds granted within the Romanian National Plan for Research, Development, and Innovation (PN-II/2007–2013) – so fulfilling the extended strategic objective “Applications for Renewable Energetic Systems,” under Nucleus Contract 34N/2009, AAD20/2015, by the project PN-09-34-02-08. B. Sz. addresses thanks to Computational Grant No. 237, PCSS (Poznan, Poland), and to T. Miernik for the help and technical support (CM UMK Bydgoszcz, Poland).

References

  1. Agnoli S, Granozzi G (2013) Second generation graphene: opportunities and challenges for surface science. Surf Sci 609:1–5CrossRefGoogle Scholar
  2. Anderson PW (1952) An approximate quantum theory of the antiferromagnetic ground state. Phys Rev 86:694–701CrossRefGoogle Scholar
  3. Anderson PW (1963) Plasmons, gauge invariance, and mass. Phys Rev 130:439–442CrossRefGoogle Scholar
  4. Anderson PW (1972) more is difference. Science 177(4047):393–396CrossRefGoogle Scholar
  5. Anderson PW (1984) Basic notions of condensed matter physics. Westview Press, BoulderGoogle Scholar
  6. Araki Y (2011) Chiral symmetry breaking in monolayer graphene by strong coupling expansion of compact and non-compact U(l) lattice gauge theories. Ann Phys 326:1408–1424CrossRefGoogle Scholar
  7. Ashrafi AR, Doslic T, Saheli M (2011) The eccentric connectivity index of TUC4C8(R) nanotubes. MATCH Commun Math Comput Chem 65:221–230Google Scholar
  8. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018CrossRefGoogle Scholar
  9. Batterman R (2002) The devil in the details: asymptotic reasoning in explanation, reduction, and emergence. Oxford University Press, OxfordGoogle Scholar
  10. Batterman R (2011) Emergence, singularities, and symmetry breaking. Found Phys 41:1031–1050CrossRefGoogle Scholar
  11. Bissett MA, Konabe S, Okada S, Tsuji M, Ago H (2013) Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 7:10335–10343CrossRefGoogle Scholar
  12. Butterfield J (2011) Less is different: emergence and reduction reconciled. Found Phys 41:1065–1135CrossRefGoogle Scholar
  13. Cataldo F, Ori O, Iglesias-Groth S (2010) Topological lattice descriptors of graphene. Mol Simul 36:341–353CrossRefGoogle Scholar
  14. Cataldo F, Ori O, Graovac A (2011) Topological efficiency of C66 fullerene. Int J Chem Model 3:45–63Google Scholar
  15. Cavaliere F, De Giovannini U (2010) General Hartree-Fock method and symmetry breaking in quantum dots. Phys E 42:606–609CrossRefGoogle Scholar
  16. Chattaraj PK, Maiti B (2003) HSAB principle applied to the time evolution of chemical reactions. J Am Chem Soc 125:2705–2710CrossRefGoogle Scholar
  17. Chattaraj PK, Schleyer PVR (1994) An ab initio study resulting in a greater understanding of the HSAB principle. J Am Chem Soc 116:1067–1071CrossRefGoogle Scholar
  18. Chattaraj PK, Lee H, Parr RG (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  19. Chattaraj PK, Liu GH, Parr RG (1995) The maximum hardness principle in the Gyftpoulos-Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions. Chem Phys Lett 237:171–176CrossRefGoogle Scholar
  20. Chung SG (2006) Spontaneous symmetry breaking in Josephson junction arrays. Phys Lett A 355:394–398CrossRefGoogle Scholar
  21. Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. New J Phys 11:083019CrossRefGoogle Scholar
  22. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr., Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) Nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. http://en.wikipedia.org/wiki/Digital_object_identifier
  23. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in GAUSSIAN98: Part 1. The calculation of energies, gradient, vibrational frequencies and electric field derivatives. J Mol Struct (Theochem) 462:1–21CrossRefGoogle Scholar
  24. De Corato M, Benedek G, Ori O, Putz MV (2012) Topological study of schwarzitic junctions. in 1D lattices. Int J Chem Model 4:105–113Google Scholar
  25. Dirac PAM (1978) In: Marlow A (ed) Mathematical foundations of quantum theory. Academic, New YorkCrossRefGoogle Scholar
  26. Diudea MV (1994) Molecular topology. 16. Layer matrices in molecular graphs. J Chem Inf Comput Sci 34(5):1064–1071CrossRefGoogle Scholar
  27. Diudea MV (2010) Nanomolecules and nanostructures – polynomials and indices, MCM, No. 10. University Kragujevac, KragujevacGoogle Scholar
  28. Diudea MV, Ursu O (2003) Layer matrices and distance property descriptors. Indian J Chem A 42(6):1283–1294Google Scholar
  29. Diudea MV, Topan M, Graovac A (1994) Molecular topology. 17. Layer matrices of walk degrees. J Chem Inf Comput Sci 34(5):1072–1078CrossRefGoogle Scholar
  30. Doslic T, Saheli M, Vukicevic D (2010) Eccentric connectivity index: extremal graphs and values. Iranian J Math Chem 1:45–55Google Scholar
  31. Doslic T, Graovac A, Ori O (2011) Eccentric connectivity index of hexagonal belts and chains. Commun Math Comput Chem 65:745–752Google Scholar
  32. Dureja H, Madan AK (2007) Superaugmented eccentric connectivity indices: new-generation highly discriminating topological descriptors for QSAR/QSPR modeling. Med Chem Res 16:331–341CrossRefGoogle Scholar
  33. Earman J (2003) In: Brading K, Castellani E (eds) Symmetries in physics. Cambridge University Press, Cambridge, pp 335–346CrossRefGoogle Scholar
  34. Egger R, Hausler W, Mak CH, Grabert H (1999) Crossover from Fermi liquid to Wigner molecule behavior in quantum dots. Phys Rev Lett 82:3320–3323CrossRefGoogle Scholar
  35. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613CrossRefGoogle Scholar
  36. Elitzur S (1975) Impossibility of spontaneously breaking local symmetries. Phys Rev D 12:3978–3982CrossRefGoogle Scholar
  37. Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323CrossRefGoogle Scholar
  38. Fradkin E, Shenker SH (1979) Phase diagrams of lattice gauge theories with Higgs fields. Phys Rev D 19:3682–3697CrossRefGoogle Scholar
  39. Frauendorf S (2001) Spontaneous symmetry breaking in rotating nuclei. Rev Mod Phys 73:463–514CrossRefGoogle Scholar
  40. Fukutome H (1981) Unrestricted Hartree-Fock theory and its applications to molecules and chemical reactions. Int J Quantum Chem 20:955–1065CrossRefGoogle Scholar
  41. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874CrossRefGoogle Scholar
  42. Ghosal A, Guclu AD, Umrigar CJ, Ullmo D, Baranger HU (2006) Correlation-induced inhomogeneity in circular quantum dots. Nat Phys 2:336–340CrossRefGoogle Scholar
  43. Goldstone J (1961) Field theories with superconductor solutions. Nuovo Cimento XIX:154–164CrossRefGoogle Scholar
  44. Goldstone J, Salam A, Weinberg S (1962) Symmetry groups in nuclear and particle physics. Phys Rev 127:965–970CrossRefGoogle Scholar
  45. Guralnik GS, Hagen CR, Kibble TWB (1964) Global conservation laws and massless particles. Phys Rev Lett 13:585–587CrossRefGoogle Scholar
  46. Hammes-Schiffer S, Andersen HC (1993) The advantages of the general Hartree-Fock method for future. J Chem Phys 99:1901–1913CrossRefGoogle Scholar
  47. Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873CrossRefGoogle Scholar
  48. Hempel C, Oppenheim P (2008) In: Bedau MA, Humphreys P (eds.), Emergence. MIT Press, Cambridge (MA), pp 61–80. Originally published in Hempel C (1965) Aspects of scientific explanation and other essays in the philosophy of science. The Free Press/Collier-Macmillan Ltd, New York/LondonGoogle Scholar
  49. Higgs PW (1964a) Broken symmetries, massless particles and gauge fields. Phys Lett 12:132–133CrossRefGoogle Scholar
  50. Higgs PW (1964b) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509CrossRefGoogle Scholar
  51. Hoffmann R (2013) Small but strong lessons from chemistry for nanoscience. Angew Chem Int Ed 52:93–103CrossRefGoogle Scholar
  52. Hwang C, Siegel DA, Mo SK, Regan W, Ismach A, Zhang Y, Zettl A, Lanzara A (2012) Fermi velocity engineering in graphene by substrate modification. Sci Rep 2(590):1–4Google Scholar
  53. Iranmanesh A, Ashrafi AR, Graovac A, Cataldo F, Ori O (2012) In: Gutman I, Furtula B (eds) Distance in molecular graphs, vol 13, Mathematical chemistry monographs series. Faculty of Science, Kragujevac, pp 35–155Google Scholar
  54. Jalbout AF, Ortiz YP, Seligman TH (2013) Spontaneous symmetry breaking and strong deformations in metal adsorbed graphene sheets. Chem Phys Lett 564:69–72CrossRefGoogle Scholar
  55. Kalliakos S, Rontani M, Pellegrini V, Garcia CP, Pinczuk A, Goldoni G, Molinari E, Pfeiffer LN, West KW (2008) A molecular state of correlated electrons in a quantum dot. Nat Phys 4:467–471CrossRefGoogle Scholar
  56. Kibble TWB (1967) Symmetry breaking in non-abelian gauge theories. Phys Rev 155:1554–1561CrossRefGoogle Scholar
  57. Koopmans T (1934) Chemical bonds and bond energy. Physica 1:104–113CrossRefGoogle Scholar
  58. Koorepazan-Moftakhar F, Ashrafi AR, Ori O, Putz MV (2015) Topological invariants of nanocones and fullerenes. Curr Org Chem 19(3):240–248CrossRefGoogle Scholar
  59. Koorepazan–Moftakhar F, Ashrafi AR, Ori O, Putz MV (2014) In: Ellis SB (ed) Fullerenes: chemistry natural sources and technological applications. Nova Science Publishers, New York, pp 285–304Google Scholar
  60. Kotakoski J, Krasheninnikov AV, Kaiser U, Meyer JC (2011) From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett 106(105505):1–4Google Scholar
  61. Kuhn H (2008) Origin of life—symmetry breaking in the universe: emergence of homochirality. Curr Opin Colloid Interface Sci 13:3–11CrossRefGoogle Scholar
  62. Kumar V, Sardana S, Madan AK (2004) Predicting anti- HIV activity of 2,3-diary l-1,3-thiazolidin-4-ones: computational approaches using reformed eccentric connectivity index. J Mol Model 10:399–407CrossRefGoogle Scholar
  63. Lackner KS, Zweig G (1983) Introduction to the chemistry of fractionally charged atoms: electronegativity. Phys Rev D 28:1671–1691CrossRefGoogle Scholar
  64. Landau LD, Lifshitz EM (1977) The conservation laws of non-relativistic classical and quantum mechanics for a system of interacting, 3rd edn. Quantum Mechanics Pergamon Press, OxfordGoogle Scholar
  65. Landsman NP (2007) In: Butterfield J, Earman J (eds) Handbook of the philosophy of science, vol 2, Philosophy of physics, Part A. North-Holland, Amsterdam, pp 417–553Google Scholar
  66. Landsman NP (2013) Spontaneous symmetry breaking in quantum systems: Emergence or reduction? Stud Hist Philos Mod Phys 44:379–394Google Scholar
  67. Landsman NP, Reuvers R (2013) Real- and imaginary-time field theory at finite temperature and density. Found Phys 43:373–407CrossRefGoogle Scholar
  68. Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Castro Neto AH, Crommie MF (2010) Strain-induced pseudo-magnetic fields greater than. Science 329:544–547CrossRefGoogle Scholar
  69. Long X, Zhao F, Liu H, Huang J, Lin Y, Zhu J, Luo S-N (2015) Anisotropic shock response of Stone–Wales defects in graphene. J Phys Chem C 119(13):7453–7460CrossRefGoogle Scholar
  70. Mikami K, Yamanaka M (2003) Strain-induced pseudo–magnetic fields greater than 300 Tesla in graphene nanobubbles. Chem Rev 103:3369–3400CrossRefGoogle Scholar
  71. Mill JS (1952[1843]) A system of logic, 8th edn. Longmans, Green, Reader, and Dyer, LondonGoogle Scholar
  72. Mineva T, Sicilia E, Russo N (1998) Density functional approach to hardness evaluation and use in the study of the maximum hardness principle. J Am Chem Soc 120:9053–9058CrossRefGoogle Scholar
  73. Monin A, Voloshin MB (2010) Spontaneous and induced decay of metastable strings and domain walls. Ann Phys 325:16–48CrossRefGoogle Scholar
  74. Mortier WJ, Genechten KV, Gasteiger J (1985) Electronegativity equalization: application and parametrization. J Am Chem Soc 107:829–835CrossRefGoogle Scholar
  75. Nakamura Y, Yu P, Tsai JS (1999) Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398:786–788CrossRefGoogle Scholar
  76. Nambu J, Jona-Lasinio G (1961) Dynamical model of elementary particles based on an analogy with superconductivity. Phys Rev 122:345–358CrossRefGoogle Scholar
  77. Norton JD (2012) Approximation and idealization: why the difference matters. Philos Sci 79:207–232CrossRefGoogle Scholar
  78. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200Google Scholar
  79. Ori O, Cataldo F, Putz MV (2011) Topological Anisotropy of Stone-Wales Waves in Graphenic Fragments. Int J Mol Sci 12:7934–7949Google Scholar
  80. Ori O, Putz MV, Gutman I, Schwerdtfeger P (2014) In: Gutman I, Pokrić B, Vukičević D (eds) Ante graovac – life and works, vol 16, Mathematical chemistry monographs series. Faculty of Science, Kragujevac, pp 259–272Google Scholar
  81. Palmer AR (2004) Symmetry breaking and the evolution of development. Science 306:828–833CrossRefGoogle Scholar
  82. Parr RG, Yang W (1984) Density functional approach to the frontier electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  83. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  84. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3808CrossRefGoogle Scholar
  85. Pearson RG (1985) Absolute electronegativity and absolute hardness of Lewis acids and bases. J Am Chem Soc 107:6801–6806CrossRefGoogle Scholar
  86. Pearson RG (1990) Hard and soft acids and bases-the evolution of a concept. Coord Chem Rev 100:403–425CrossRefGoogle Scholar
  87. Pearson RG (1997) Chemical hardness. Wiley, WeinheimCrossRefGoogle Scholar
  88. Putz MV (2003) Contributions within density functional theory with applications in chemical reactivity theory and electronegativity. Dissertation.com, ParklandGoogle Scholar
  89. Putz MV (2008a) The chemical bond: spontaneous symmetry – breaking approach. Symmetr Cult Sci 19(4):249–262Google Scholar
  90. Putz MV (2008b) Maximum hardness index of quantum acid–base bonding. MATCH Commun Math Comput Chem 60:845–868Google Scholar
  91. Putz MV (2009a) Path integrals for electronic densities, reactivity indices, and localization function in quantum systems. Int J Mol Sci 10:4816–4940CrossRefGoogle Scholar
  92. Putz MV (2009b) Electronegativity: quantum observable. Int J Quantum Chem 109:733–738CrossRefGoogle Scholar
  93. Putz MV (2010a) The bondons: the quantum particles of the chemical bond. Int J Mol Sci 11(11):4227–4256CrossRefGoogle Scholar
  94. Putz MV (2010b) Chemical hardness: quantum observable? Studia Univ Babeş-Bolyai–Ser Chem 55:47–50Google Scholar
  95. Putz MV (2011a) Electronegativity and chemical hardness: different patterns in quantum chemistry. Curr Phys Chem 1:111–139CrossRefGoogle Scholar
  96. Putz MV (2011b) Chemical action concept and principle. MATCH Commun Math Comput Chem 66:35–63Google Scholar
  97. Putz MV (2011c) In: Putz MV (ed) Carbon bonding and structures: advances in physics and chemistry, vol. 5. Springer, Dordrecht, Chapter 1, pp 1–32Google Scholar
  98. Putz MV (2012) Chemical orthogonal spaces, vol 14, Mathematical chemistry monographs. Faculty of Science, KragujevacGoogle Scholar
  99. Putz MV (2013) Chemical Orthogonal Spaces (COSs): from structure to reactivity to biological activity. Int J Chem Model 5:1–34Google Scholar
  100. Putz MV (2016) Quantum nanochemistry. A fully integrated approach: vol III. Quantum molecules and reactivity. Apple Academic Press/CRC Press, TorontoCrossRefGoogle Scholar
  101. Putz MV, Chattaraj PK (2013) Electrophilicity kernel and its hierarchy through softness in conceptual density functional theory. Int J Quantum Chem 113:2163–2171CrossRefGoogle Scholar
  102. Putz MV, Dudaș NA (2013) The anti-HIV pyrimidines’ bonding mechanism. Molecules 18(8):9061–9116CrossRefGoogle Scholar
  103. Putz MV, Ori O (2012) Bondonic characterization of extended nano systems: application to graphene’s nanoribbons. Chem Phys Lett 548:95–100CrossRefGoogle Scholar
  104. Putz MV, Ori O (2014a) Bondonic effects in group-IV honeycomb nanoribbons with stone-wales topological defects. Molecules 19:4157–4188CrossRefGoogle Scholar
  105. Putz MV, Ori O (2014b) Timişoara eccentricity index (TM-EC). Personal Communication. West University of Timişoara, 2−9 MarchGoogle Scholar
  106. Putz MV, Ori O (2015a) Predicting bondons by Goldstone mechanism with chemical topological indices. Int J Quantum Chem 115(3):137–143CrossRefGoogle Scholar
  107. Putz MV, Ori O (2015b) In: Putz MV, Ori O (eds) Exotic properties of carbon nanomatter, advances in physics and chemistry series, vol 8. Springer, Dordrecht, Chapter 10, pp 229–260Google Scholar
  108. Putz MV, Tudoran MA (2014a) Bondonic effects on the topo-reactivity of PAHs. Int J Chem Model 6(2–3):311–346Google Scholar
  109. Putz MV, Tudoran MA (2014b) Anti-bondonic effects on the topo-reactivity of PAHs. Int J Chem Model 6(4):475–505Google Scholar
  110. Putz MV, Russo N, Sicilia E (2004) On the application of the HSAB principle through the use of improved computational schemes for chemical hardness evaluation. J Comput Chem 25:994–1003CrossRefGoogle Scholar
  111. Putz MV, Ori O, Cataldo F, Putz AM (2013a) Parabolic reactivity “Coloring” molecular topology: application to carcinogenic PAHs. Curr Org Chem 17(23):2816–2830CrossRefGoogle Scholar
  112. Putz MV, Tudoran MA, Putz AM (2013b) Structure properties and chemical-bio/ecological of PAH interactions: from synthesis to cosmic spectral lines, nanochemistry, and lipophilicity-driven reactivity. Curr Org Chem 17(23):2845–2871CrossRefGoogle Scholar
  113. Putz MV, Tudoran MA, Ori O (2015) Topological organic chemistry: from distance matrix to timisoara eccentricity. Curr Org Chem 19(3):249–273CrossRefGoogle Scholar
  114. Putz MV, Ori O, Diudea M (2016) In: Aliofkhazraei M, Ali N, Milne WI, Ozkan CS, Mitura S, Gervasoni JL (eds) Graphene science handbook, vol 3. Electrical and optical properties. CRC Press/Taylor & Francis Group, Boca Raton, Chapter 14Google Scholar
  115. Randić M, Zupan J, Balaban AT, Vikić-Topić D, Plavšić D (2011) Graphical representation for protein. Chem Rev 111(2):790–862CrossRefGoogle Scholar
  116. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035CrossRefGoogle Scholar
  117. Reimann SM, Manninen M (2002) Electronic structure of quantum dots. Rev Mod Phys 74:1283–1342CrossRefGoogle Scholar
  118. Reimann SM, Koskinen M, Manninen M (2000) Formation of Wigner molecules in small quantum dots. Phys Rev B 62:8108–8113CrossRefGoogle Scholar
  119. Ruckenstein E, Berim GO (2010) Contact angle of a nanodrop on a nanorough solid surface. Adv Colloid Interf Sci 154:56–76CrossRefGoogle Scholar
  120. Rueger A (2000) Physical emergence, diachronic and synchronic. Synthese 124:297–322CrossRefGoogle Scholar
  121. Rueger A (2006) Functional reduction and emergence in the physical sciences. Synthese 151:335–346CrossRefGoogle Scholar
  122. Sanderson RT (1988) Principles of electronegativity. J Chem Educ 65:112–119CrossRefGoogle Scholar
  123. Schwerdtfeger P, Wirz L, Avery J (2014) Program FULLERENE – a fortran/C++ program for creating fullerene structures and for performing topological analyses (Version 4.4). Massey University Albany, Auckland. http://ctcp.massey.ac.nz/index.php?group=&page=fullerenes&menu=fullerenes. Accessed 1 May 2014
  124. Sharma V, Goswami R, Madan AK (1997) Eccentric connectivity index: a novel highly discriminating topological descriptor for structure–property and structure-activity studies. J Chem Inf Comput Sci 37:273–282CrossRefGoogle Scholar
  125. Sheka EF (2007) Odd electrons in molecular chemistry, surface science, and solid state magnetism. Int J Quantum Chem 107:2935–2955CrossRefGoogle Scholar
  126. Sheka EF (2012) Computational strategy for graphene: insight from odd electrons correlation. Int J Quantum Chem 112:3076–3090CrossRefGoogle Scholar
  127. Sheka EF (2013) Molecular Theory of Graphene. In: Hetokka M, Brandas E, Maruani J, Delgado-Barrio G (eds) Prog Theor Chem Phys 27:249–284Google Scholar
  128. Sheka EF (2014) The uniqueness of physical and chemical natures of graphene: their coherence and conflicts. Int J Quantum Chem 114:1079–1095CrossRefGoogle Scholar
  129. Sorkin A, Iron MA, Truhlar DG (2008) Density functional theory in transition-metal chemistry: relative energies of low-lying states of iron compounds and the effect of spatial symmetry breaking. J Chem Theory Comput 4:307–315CrossRefGoogle Scholar
  130. Staroverov VN, Davidson ER (2000) Distribution of effectively unpaired electrons. Chem Phys Lett 330:161–168CrossRefGoogle Scholar
  131. Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503CrossRefGoogle Scholar
  132. Tachibana A (1987) Density functional rationale of chemical reaction coordinate. Int J Quantum Chem 21:181–190CrossRefGoogle Scholar
  133. Tachibana A, Parr RG (1992) On the redistribution of electrons for chemical reaction systems. Int J Quantum Chem 41:527–555CrossRefGoogle Scholar
  134. Tachibana A, Nakamura K, Sakata K, Morisaki T (1999) Application of the regional density functional theory: the chemical potential inequality in the HeH+ system. Int J Quantum Chem 74:669–679CrossRefGoogle Scholar
  135. Tan ZB, Cox D, Nieminen T, Lähteenmäki P, Golubev D, Lesovik GB, Hakonen PJ (2015) Cooper pair splitting by means of graphene quantum dots. Phys Rev Lett 114(096602):1–5Google Scholar
  136. Terenziani F, Painelli A, Katan C, Charlot M, Blanchard-Desce M (2006) Chromophores: symmetry breaking and solvatochromism. J Am Chem Soc 128:15742–15755CrossRefGoogle Scholar
  137. Terrones M, Botello-Mendez AR, Campos-Delgado J, Lopez-Urias F, Vega-Cantu YI, Rodriguez-Macias FJ, Elias AL, Munoz-Sandoval E, Cano-Marquez AG, Charlier JC, Terrones H (2010) Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5:351–372Google Scholar
  138. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, WeinheimCrossRefGoogle Scholar
  139. Torrent-Sucarrat M, Solà M (2006) Gas-phase structures, rotational barriers, and conformational properties of hydroxyl and mercapto derivatives of cyclohexa-2,5-dienone and cyclohexa-2,5-dienthione. J Phys Chem A 110:8901–8911CrossRefGoogle Scholar
  140. Tudoran MA, Putz MV (2015) Molecular graph theory: from adjacency information to colored topology by chemical reactivity. Curr Org Chem 19(4):359–386CrossRefGoogle Scholar
  141. Vukicevic D, Cataldo F, Ori O, Graovac A (2011) Topological efficiency of C66 fullerene. Chem Phys Lett 501:442–445CrossRefGoogle Scholar
  142. Weinberg S (1996) The quantum theory of fields, vol II. Modern applications, Cambridge University Press, Cambridge, Chapters 19 and 21Google Scholar
  143. Wiener H (1947) The Wiener number of graphs. J Am Chem Soc 69:17–20CrossRefGoogle Scholar
  144. Wigner EP (1934) On the interaction of electrons in metals. Phys Rev 46:1002–1011CrossRefGoogle Scholar
  145. Wu Q, Wu Y, Hao Y, Geng J, Charlton M, Chen S, Ren Y, Ji H, Li H, Boukhvalov DW, Piner RD, Bielawski CW, Ruoff RS (2013) Selective surface functionalization at regions of high local curvature in graphene. Chem Commun 49:677–679Google Scholar
  146. Yang W, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863CrossRefGoogle Scholar
  147. Zhoua LG, Shib SQ (2003) Formation energy of Stone-Wales defects in carbon nanotubes. Appl Phys Lett 83:1222–1224CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Computational and Structural Physical-Chemistry for Nanosciences and QSAR, Department of Biology-Chemistry, Faculty of Chemistry, Biology, GeographyWest University of TimişoaraTimişoaraRomania
  2. 2.Laboratory of Renewable Energies-PhotovoltaicsR&D National Institute for Electrochemistry and Condensed MatterTimişoaraRomania
  3. 3.Actinium Chemical ResearchRomeItaly
  4. 4.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  5. 5.Department of Physical Chemistry, Faculty of Pharmacy, Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland
  6. 6.Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babes” TimişoaraTimişoaraRomania
  7. 7.Laboratory of Computational and Structural Physical-Chemistry for Nanosciences and QSAR, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of TimişoaraTimişoaraRomania

Personalised recommendations