Advertisement

The Hosoya Index and the Merrifield–Simmons Index of Some Nanostructures

  • Asma Hamzeh
  • Ali IranmaneshEmail author
  • Samaneh Hossein–Zadeh
  • Mohammad Ali Hosseinzadeh
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

The Hosoya index and the Merrifield–Simmons index are two types of graph invariants used in mathematical chemistry. In this chapter, we give ex act formulas for the Hosoya index and the Merrifield–Simmons index of bridge graph and as an application of these formulas, we obtain these indices for some nano structures.

Keywords

Hosoya index Merrifield–Simmons index Bridge graph 

Notes

Acknowledgments

Partial support by the Center of Excellence of Algebraic Hyper-structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledged by the second author (AI).

References

  1. Ahmadi MB, Seif M (2010) The MerrifieldSimmons index of an infinite class of dendrimers. Digest J Nano mater Bios 5:335–338Google Scholar
  2. Bondy JA, Murty USR (1976) Graph theory with applications. Macmillan Press, New YorkCrossRefGoogle Scholar
  3. Chan O, Gutman I, Lam TK, Merris R (1998) Algebraic connections between topological indices. J Chem Inform Comput Sci 38:62–65CrossRefGoogle Scholar
  4. Došlić T (2005) Splices, links, and their degreeweighted Wiener polynomials. Graph Theory Notes NY 48:47–55Google Scholar
  5. Gutman I (1987) Acyclic conjugated molecules, trees and their energies. J Math Chem 29:123–143Google Scholar
  6. Gutman I, Polansky OE (1986) Mathematical concepts in organic chemistry. Springer, BerlinCrossRefGoogle Scholar
  7. Gutman I, Kolavi N, Cyvin SJ (1989a) Hosoya index of some polymers. MATCH Commun Math Comput Chem 24:105–117Google Scholar
  8. Gutman I, Kolaković N, Graovac A, Babić D (1989b) A method for calculation of the Hosoya index of polymers. In: Graovac A (ed) MATH/CHEM/COMP 1988, vol 63. Elsevier, Amesterdam, The Netherlands, p 141–154Google Scholar
  9. Hosoya H (1971) Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull Chem Soc Jpn 44:2332–2339CrossRefGoogle Scholar
  10. Hosseinzadeh MA, Iranmanesh A, Došlić T (2013) On the Narumi–Katayama index of composite graphs. Croat Chem Acta 86:503–508CrossRefGoogle Scholar
  11. Hua H (2008) Hosoya index of unicyclic graphs with prescribed pendent vertices. J Math Chem 43:831–844CrossRefGoogle Scholar
  12. Li S, Zhu Z (2009) The number of independent sets in unicyclic graphs with a given diameter. Discret Appl Math 157:1387–1395CrossRefGoogle Scholar
  13. Li X, Zhao H, Gutman I (2005) On the Merrifield–Simmons index of trees. MATCH Commun Math Comput Chem 54:389–402Google Scholar
  14. Lv X, Yu A (2006) The Merrifield–Simmons indices and Hosoya indices of trees with a given maximum degree. MATCH Commun Math Comput Chem 56:605–616Google Scholar
  15. Mansour T, Schork M (2009a) The vertex PI index and Szeged index of bridge graphs. Discret Appl Math 157:1600–1606CrossRefGoogle Scholar
  16. Mansour T, Schork M (2009b) The PI index of bridge and chain graphs. MATCH Commun Math Comput Chem 61:723–734Google Scholar
  17. Mansour T, Schork M (2010) Wiener, hyper–Wiener, detour and hyper–detour indices of bridge and chain graphs. J Math Chem 47:72–98CrossRefGoogle Scholar
  18. Merrifield RE, Simmons HE (1989) Topological methods in chemistry. Wiley, New YorkGoogle Scholar
  19. Prodinger H, Tichy RF (1982) Fibonacci numbers of graphs. Fibonacci Quart 20:16–21Google Scholar
  20. Trinajstić N (1992) Chemical graph theory. CRC press, Boca RatonGoogle Scholar
  21. Wagner SG (2007) Extremal trees with respect to Hosoya index and Merrifield–Simmons index. MATCH Commun Math Comput Chem 57:221–233Google Scholar
  22. Xing R, Zhou B (2011) On the edge Szeged index of bridge graphs. Comptes Rendus Mathematique 349:489–492CrossRefGoogle Scholar
  23. Xu K (2010) On the Hosoya index and the Merrifield–Simmons index of graphs with a given clique number. Appl Math Lett 23:395–398CrossRefGoogle Scholar
  24. Xu K (2011) Computin the Hosoya index and the Wiener index of an infinite class of dendrimers. Digest J Nanomater Bios 6:265–270Google Scholar
  25. Yu A, Lv X (2007) The Merrifield–Simmons indices and Hosoya indices of trees with k pendent vertices. J Math Chem 41:33–43CrossRefGoogle Scholar
  26. Yu A, Tian F (2006) A kind of graphs with minimal Hosoya indices and maximal Merrifield–Simmons indices. MATCH Commun Math Comput Chem 55:103–118Google Scholar
  27. Zhan F, QiaoY (2013) On edge Szeged index of bridge graphs. Inf Manag Sci III Lect Notes Electri Eng 206:167–172Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Asma Hamzeh
    • 1
  • Ali Iranmanesh
    • 2
    Email author
  • Samaneh Hossein–Zadeh
    • 1
  • Mohammad Ali Hosseinzadeh
    • 1
  1. 1.Department of Mathematics, Faculty of Mathematical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Pure Mathematics, Faculty of Mathematical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations