Advertisement

Mathematical Aspects of Omega Polynomial

  • Modjtaba GhorbaniEmail author
  • Mircea V. Diudea
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

Omega polynomial Ω(G, x) counts the qoc strips of all extent in G. The first and second derivatives, in x = 1, of this polynomial enable the calculation of the recently proposed CI index. In this chapter, we introduce the weighted version of omega polynomial and then we compute them for some class of graphs.

Keywords

Omega polynomial Fullerene Weighted graph 

References

  1. Aihara J (1976) A new definition of Dewar − type resonance energies. J Am Chem Soc 98:2750–2758CrossRefGoogle Scholar
  2. Ashrafi AR, Ghorbani M (2008) A note on markaracter tables of finite groups. MATCH Commun Math Comput Chem 59:595–603Google Scholar
  3. Ashrafi AR, Ghorbani M, Jalali M (2008a) Computing Sadhana polynomial of V − phenylenic nanotubes and nanotori. Ind J Chem 47A:535–537Google Scholar
  4. Ashrafi AR, Jalali M, Ghorbani M, Diudea MV (2008b) Computing PI and omega polynomials of an infinite family of fullerenes. MATCH Commun Math Comput Chem 60:905–916Google Scholar
  5. Balasubramanian K, Ramaraj R (1985) Computer generation of king and color polynomials of graphs and lattices and their applications to statistical mechanics. J Comput Chem 6:447–454CrossRefGoogle Scholar
  6. Cigher S, Diudea MV (2007) Omega Polynomial Counter. Babes-Bolyai UniversityGoogle Scholar
  7. Clar E (1964) Polycyclic hydrocarbons. London, Academic PressCrossRefGoogle Scholar
  8. Clar E (1972) The aromatic sextet. Wiley, New YorkGoogle Scholar
  9. Darafsheh MR (2010) Computation of topological indices of some graphs. Acta Appl Math 110:1225–1235CrossRefGoogle Scholar
  10. Diudea MV (2002) Toroidal graphenes from 4 − valent tori. Bull Chem Soc Jpn 75(3):487–492CrossRefGoogle Scholar
  11. Diudea MV (2004) Covering forms in nanostructures. Forma (Tokyo) 19:131–163Google Scholar
  12. Diudea MV (2005a) Nanoporous carbon allotropes by septupling map operations. J Chem Inf Model 45:1002–1009CrossRefGoogle Scholar
  13. Diudea MV (ed) (2005a) Nanostructures. novel architecture, Nova, New YorkGoogle Scholar
  14. Diudea MV (2006) Omega polynomial. Carpath J Math 22:43–47Google Scholar
  15. Diudea MV, Nagy CSL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  16. Diudea MV, Ivanciuc O, Nikolic’ S, Trinajstic N (1997) Matrices of reciprocal distance, polynomials and derived numbers. MATCH Commun Math Comput Chem 35:41–64Google Scholar
  17. Diudea MV, Gutman I, Jäntschi L (2002) Molecular topology. Nova, New YorkGoogle Scholar
  18. Diudea MV, John PE, Graovac A, Primorac M, Pisanski T (2003) Leapfrog and related operations on toroidal fullerenes. Croat Chem Acta 76:153–159Google Scholar
  19. Diudea MV, Cigher S, Vizitiu AE, Ursu O, John PE (2006a) Omega polynomial in tubular nanostructures. Croatica Chemica Acta 79(3):445–448Google Scholar
  20. Diudea MV, Stefu M, John PE, Graovac A (2006b) Generalized operations on maps. Croatica Chemica Acta 79(3):355–362Google Scholar
  21. Diudea MV, Vizitiu AE, Janezic D (2007) Cluj and related polynomials applied in correlating studies. J Chem Inf Model 47(3):864–874CrossRefGoogle Scholar
  22. Diudea MV, Cigher S, Vizitiu AE, Florescu MS, John PE (2009) Omega polynomial and its use in nanostructure description. J Math Chem 45:316–329CrossRefGoogle Scholar
  23. Djoković DŽ (1973) Distance-preserving subgraphs of hypercubes. J Combin Theory Ser B 14:263–267CrossRefGoogle Scholar
  24. Dwyes PS (1951) Linear computations. Wiley, New YorkGoogle Scholar
  25. Fadeev DK, Sominsky IS (1965) Problems in higher algebra. Freeman, San FranciscoGoogle Scholar
  26. Farrell EJ (1979) An introduction to matching polynomials. J Comb Theory B 27:75–86CrossRefGoogle Scholar
  27. Farrell EJ, De Matas CM (1988a) On star polynomials of complements of graphs. Arkiv for matematik 26(1–2):185–190CrossRefGoogle Scholar
  28. Farrell EJ, De Matas CM (1988b) Star polynomials of some families of graphs with small cyclomatic numbers. Util Math 33:33–45Google Scholar
  29. Ghorbani M, Ashrafi AR (2006) Counting the number of hetero fullerenes. J Comput Theor Nanosci 3:803–810CrossRefGoogle Scholar
  30. Graham RL, Lovaśz L (1978) Distance matrix polynomials of trees. Adv Math 29:60–88CrossRefGoogle Scholar
  31. Gutman I (1992) Some analytical properties of the independence and matching polynomials. MATCH Commun Math Comput Chem 28:139–150Google Scholar
  32. Gutman I, Hosoya H (1990) Molecular graphs with equal Z − counting and independence polynomials. Z Naturforsch 45:645–648Google Scholar
  33. Gutman I, Milun M, Trinajstić N (1975) Topological definition of delocalisation energy. MATCH Commun Math Comput Chem 1:171–175Google Scholar
  34. Gutman I, Milun M, Trinajstić N (1977) Graph theory and molecular orbitals 19. Nonparametric resonance energies of arbitrary conjugated systems. J Am Chem Soc 99:1692–1704CrossRefGoogle Scholar
  35. Gutman I, Klavžar S, Petkovšek M, Žigert P (2001) On Hosoya polynomials of benzenoid graphs. MATCH Commun Math Comput Chem 43:49–66Google Scholar
  36. Harary F (1962) The determinant of the adjacency matrix of a graph. SIAM Rev 4:202–210CrossRefGoogle Scholar
  37. Hosoya H (1971) Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull Chem Soc Japan 44:2332–2339CrossRefGoogle Scholar
  38. Hosoya H (1988) On some counting polynomials in chemistry. Discrete Appl Math 19:239–257CrossRefGoogle Scholar
  39. Hosoya H (1990) Clar’s aromatic sextet and sextet polynomial. Top Curr Chem 153:255–272CrossRefGoogle Scholar
  40. Hosoya H, Yamaguchi T (1975) Sextet polynomial. A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons. Tetrahedron Lett 16(52):4659–4662CrossRefGoogle Scholar
  41. Hosoya H, Murakami M, Gotoh M (1973) Distance polynomial and characterization of a graph. Natl Sci Rept Ochanomizu Univ 24:27–34Google Scholar
  42. Ivanciuc O, Diudea MV, Khadikar PV (1998) New topological matrices and their polynomials. Indian J Chem − Sect A Inor, Phys, Theor Anal Chem 37(7):574–585Google Scholar
  43. Ivanciuc O, Ivanciuc T, Diudea MV (1999) Polynomials and spectra of molecular graphs. Roum Chem Quart Rev 7:41–67Google Scholar
  44. Jalali M, Ghorbani M (2009) On omega polynomial of C40n+ 6 fullerenes. Studia Universititatis Babes − Bolyai 54:25–32Google Scholar
  45. John PE, Khadikar PV, Singh J (2007a) A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts. Journal of Mathematical Chemistry 42(1):37–45CrossRefGoogle Scholar
  46. John PE, Vizitiu AE, Cigher S, Diudea MV (2007b) CI index in tubular nanostructures. MATCH Commun Math Comput Chem 57:479–484Google Scholar
  47. Klavžar S (2008) Some comments on co graphs and CI index. MATCH Commun Math Comput Chem 59:217–222Google Scholar
  48. Konstantinova EV, Diudea MV (2000) The Wiener polynomial derivatives and other topological indices in chemical research. Croat Chem Acta 73:383–403Google Scholar
  49. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminster fullerene. Nature 318:162–163CrossRefGoogle Scholar
  50. Kroto HW, Fichier JE, Cox DE (1993) The fullerene. Pergamon Press, New YorkCrossRefGoogle Scholar
  51. Ohkami N, Hosoya H (1983) Topological dependency of the aromatic sextets in polycyclic benzenoid hydrocarbons, recursive relations of the sextet polynomial. Theor Chim Acta 64:153–170CrossRefGoogle Scholar
  52. Ohkami N, Motoyama A, Yamaguchi T, Hosoya H (1981) Mathematical properties of the set of the Kekule patterns and the sextet polynomial for polycyclic aromatic hydrocarbons. Tetrahedron 37:1113–1122CrossRefGoogle Scholar
  53. Ovchinikov S (2007) Partial cubes: structures, characterizations and constructions. arXiv: 0704.0010v1 [math CO].Google Scholar
  54. Sachs H (1964) Beziehungen zwischen den in einem graphen enthaltenen Kreisen und seinem charakteristischen polynom. Publ Math (Debrecen) 11:119–134Google Scholar
  55. Stefu M, Diudea MV, John PE (2005) Composite operations on maps. Studia Univ. “Babes − Bolyai” 50:165–174Google Scholar
  56. Stevanovic D (1998) Graphs with palindromic independence polynomial. Graph Theory Notes NY 34:31–36Google Scholar
  57. Tang A, Kiang Y, Yan G, Tai S (1986) Graph theoretical molecular orbitals. Science Press, BeijingGoogle Scholar
  58. Trinajstić N (1992) Chemical graph theory. IInd Ed CRC Press, Boca RatonGoogle Scholar
  59. Vizitiu AE, Cigher S, Diudea MV, Florescu MS (2007) Omega polynomial in ((4,8)3) tubular nanostructures. MATCH Commun Math Comput Chem 57(2):457–462Google Scholar
  60. Winkler PM (1984) Isometric embedding in products of complete graphs. Discret Appl Math 7:221–225CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations