The Spectral Moments of a Fullerene Graph and Their Applications

  • G. H. Fath-TabarEmail author
  • F. Taghvaee
  • M. Javarsineh
  • A. Graovac
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)


A (k,6)-fullerene graph is a planar 3-regular graph with k-polygon faces. In this chapter, we are going to obtain spectral moments of (k,6)-fullerene graph for k = 3,4,5 and use them for calculating the Estrada index of these graphs.


Planar Graph Adjacency Matrix Simple Graph Protein Interaction Network Fullerene Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aleksić T, Gutman I, Petrović M (2007) Estrada index of iterated line graphs. Bull Academie Serbe des Sci et des Arts (Cl Math Natur) 134:33–41Google Scholar
  2. Ashrafi AR, Fath−Tabar GH (2011) Bounds on the Estrada index of ISR (4,6) − fullerenes. Appl Math Lett 24:337–339CrossRefGoogle Scholar
  3. Balasubramanian K (1994) Laplacian polynomials of fullerenes (C20 − C40). Chem Phys Lett 224:325–332CrossRefGoogle Scholar
  4. Behmaram A (2013) Matching in fullerene and molecular graphs. Ph.D. thesis, University of TehranGoogle Scholar
  5. Cvetković D, Stevanković D (2004) Spectral moments of fullerene graphs. MATCH Commun Math Comput Chem 50:62–72Google Scholar
  6. Cvetković D, Doob M, Sachs H (1995) Spectra of graphs − theory and application, 3rd edn. Johann Ambrosius Barth Verlag, Heidelberg/LeipzigGoogle Scholar
  7. De La Pena JA, Gutman I, Rada J (2007) Estimating the Estrada index. Linear Algebra Appl 427:70–76CrossRefGoogle Scholar
  8. Estrada E (2000) Characterization of 3D molecular structure. Chem Phys Lett 319:713–718CrossRefGoogle Scholar
  9. Estrada E (2002) Characterization of the folding degree of proteins. Bioinformatics 18:697–704CrossRefGoogle Scholar
  10. Estrada E (2004) Characterization of the amino acid contribution to the folding degree of proteins. Proteins 54:727–737CrossRefGoogle Scholar
  11. Estrada E (2007) Topological structural classes of complex networks. Phys Rev 75:016103Google Scholar
  12. Estrada E, Rodriguez − Valazquez JA, Randić M (2006) Atomic branching in molecules. Int J Quantum Chem 106:823–832CrossRefGoogle Scholar
  13. Fath−Tabar GH, Ashrafi AR (2010) Some remarks on Laplacian eigenvalues and Laplacian energy of graphs. Math Commun 15:443–451Google Scholar
  14. Fath−Tabar GH, Ashrafi AR (2011) New upper bounds for Estrada index of bipartite graphs. Linear Algebra Appl 435:2607–2611CrossRefGoogle Scholar
  15. Fath−Tabar GH, Ashrafi AR, Gutman I (2008) Note on Laplacian energy of graphs. Bulletin de l’Academie Serbe des Sciences et des Arts 137:1–10Google Scholar
  16. Fath−Tabar GH, Ashrafi AR, Gutman I (2009) Note on Estrada and L − Estrada indices of graphs. Bulletin del Academie Serbe des Sciences et des Arts 139:1–16Google Scholar
  17. Fath-Tabar GH, Ashrafi AR, Stevanovic D (2012) Spectral properties of fullerenes. J Comput Theor Nanosci 9:1–3CrossRefGoogle Scholar
  18. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Oxford University Press, New YorkGoogle Scholar
  19. Gutman I, Radenković S (2007a) A lower bound for the Estrada index of bipartite molecular graphs. Kragujevac J Sci 29:67–72Google Scholar
  20. Gutman I, Radenković S (2007b) Estrada index of benzenoid hydrocarbons. Z Naturforschung 62a:254–258Google Scholar
  21. Gutman I, Furtula B, Marković V, Glišić B (2007a) Alkanes with greatest Estrada index. ZNaturforsch 62a:495–498Google Scholar
  22. Gutman I, Radenković S, Furtula B, Mansour T, Schork M (2007b) Relating Estrada index with spectral radius. J Serb Chem Soc 72:1321–1327CrossRefGoogle Scholar
  23. Gutman I, Furtula B, Glišic B, Marković V, Vesel A (2007c) Estrada index of acyclic molecules. Indian J Chem 46a:723–728Google Scholar
  24. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60 Buckminster fullerene. Nature 318:162–163CrossRefGoogle Scholar
  25. Kroto HW, Fichier JE, Cox DE (1993) The fullerene. Pergamon Press, New YorkCrossRefGoogle Scholar
  26. Mehranian Z, Gholami A, Ashrafi AR (2014) Experimental results on the symmetry and topology of 3− and 4 − generalized fullerenes. J Comput Theor Nanosci 11:2283–2288CrossRefGoogle Scholar
  27. Myrvold W, Bultena B, Daugherty S, Debroni B, Girn S, Minchenko M, Woodcock J, Fowler PW (2007) A graphical user interface for investigating conjectures about fullerenes. MATCH Commun Math Comput Chem 58:403–422Google Scholar
  28. Taghvaee F, Ashrafi AR (2016) Comparing fullerenes by spectral moments. J Nanosci Nanotechnol 16:3132–3135CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • G. H. Fath-Tabar
    • 1
    Email author
  • F. Taghvaee
    • 1
  • M. Javarsineh
    • 1
  • A. Graovac
    • 2
  1. 1.Department of Pure Mathematics, Faculty of Mathematical SciencesUniversity of KashanKashanIran
  2. 2.The Rugjer Boskovic Institute, NMR CenterZagrebCroatia

Personalised recommendations