Advertisement

Molecular Dynamics Simulation of Carbon Nanostructures: The Nanotubes

  • István LászlóEmail author
  • Ibolya Zsoldos
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9)

Abstract

Molecular dynamics calculations can reveal the physical and chemical properties of various carbon nanostructures or can help to devise the possible formation pathways. In our days the most well-known carbon nanostructures are the fullerenes, the nanotubes, and the graphene. The fullerenes and nanotubes can be thought of as being formed from graphene sheets, i.e., single layers of carbon atoms arranged in a honeycomb lattice. Usually the nature does not follow the mathematical constructions. Although the first time the C60 and the C70 were produced by laser-irradiated graphite, the fullerene formation theories are based on various fragments of carbon chains and networks of pentagonal and hexagonal rings. In the present article, using initial structures cut out from graphene will be presented in various formation pathways for the armchair (5,5) and zigzag (9,0) nanotubes. The interatomic forces in our molecular dynamics simulations will be calculated using tight-binding Hamiltonian.

Keywords

Molecular Dynamic Simulation Environmental Temperature Initial Structure Molecular Motor Carbon Nanostructures 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank for the support of grant TÁMOP-4.2.2/A-11/1/KONV-2012-0029 project.

References

  1. Allen MP, Tildesley DJ (1996) PC computer simulation of liquids. Clarendon Press, OxfordGoogle Scholar
  2. Baggott J (1996) Perfect symmetry. The accidental discovery of buckminsterfullerene. Oxford University Press, Oxford/New York/TokyoGoogle Scholar
  3. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRefGoogle Scholar
  4. Bochvar DA, Galpern EG (1973) Hypothetical systems: carbododecahedron, s-icosahedron and carbo-s-icosahedron. Dokl Acad Nauk SSSR 209:610–612 (In Russian)Google Scholar
  5. Boehm HP (1997) The first observation of carbon nanotubes. Carbon 35:581–584CrossRefGoogle Scholar
  6. Boorum MM, Vasil’ev YV, Drewello T, Scott LT (2001) Groundwork for rational synthesis of C60: cyclodehydrogenation of a C60H30 polyarene. Science 294:828–831CrossRefGoogle Scholar
  7. Chen Z, Lin Y, Rooks MJ, Avouris P (2007) Graphene nanoribbon electronics. Phys E 40:228–232CrossRefGoogle Scholar
  8. Chuvilin A, Kaiser U, Bichoutsskaia E, Besley NA, Khlobystov AN (2010) Direct transformation of graphene to fullerene. Nat Chem 2:450–453CrossRefGoogle Scholar
  9. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Academic Press, New York/LondonGoogle Scholar
  10. Fowler PW, Manolopulos DE (1995) An atlas of fullerenes. Clarendon Press, OxfordGoogle Scholar
  11. Frenkel S, Smit B (1996) Understanding molecular simulation. Academic Press, San DiegoGoogle Scholar
  12. Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mat 6:183–191CrossRefGoogle Scholar
  13. Han MY, Ozylmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of band gap nanoribbons. Phys Rev Lett 98:206805CrossRefGoogle Scholar
  14. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A31:1965–1967Google Scholar
  15. Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56–58CrossRefGoogle Scholar
  16. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  17. Jones DEH (1966) Ariadne. New Scientist 32: 245–245.Google Scholar
  18. Krätschmer W (2011) The story of making fullerenes. Nanoscale 3:2485–2489CrossRefGoogle Scholar
  19. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60. A new form of carbon. Nature 347:354–358CrossRefGoogle Scholar
  20. Kroto HW (1992) C-60-Buckminsterfullerene, the celestial sphere that fell to earth. Angew Chem Int Ed 31:111–129CrossRefGoogle Scholar
  21. Kroto HK, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  22. Landau LD (1937) Zur Theorie der Phasenumwandlungen II. Phys Z Sowjetunion 11:26–35Google Scholar
  23. Larsson S, Volosov A, Rosen A (1987) Optical spectrum of the icosahedral C60 – “follene-60”. Chem Phys Lett 137:501–504CrossRefGoogle Scholar
  24. László I (1998) Formation of cage-like C60 clusters in molecular-dynamics simulations. Europhys Lett 44:741–746CrossRefGoogle Scholar
  25. László I, Udvardi L (1987) On the geometrical structure and UV spectrum of the truncated icosahedron molecule. Chem Phys Lett 136:418–422CrossRefGoogle Scholar
  26. László I, Zsoldos I (2012a) Graphene-based molecular dynamics nanolithography of fullerenes, nanotubes and other carbon structures. Europhys Lett 99:63001p1–63001p5Google Scholar
  27. László I, Zsoldos I (2012b) Molecular dynamics simulation of carbon nanostructures: the C60 buckminsterfullerene. Phys Stat Solidi B 249:2616–2619Google Scholar
  28. László I, Zsoldos I (2014) Molecular dynamics simulation of carbon nanostructures: the D5h C70 fullerene. Phys E 56:422–426CrossRefGoogle Scholar
  29. Monthioux M, Kuznetsov VL (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–1623CrossRefGoogle Scholar
  30. Nosé S (1984) Molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268CrossRefGoogle Scholar
  31. Novoselov KS, Geim AK, Morozov SV, jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  32. O’Rourke J (2011) How to fold it science of fullerenes and carbon nanotubes: their properties and applications. Cambridge University Press, CambridgeGoogle Scholar
  33. Osawa E (1970) Superaromaticity. Kagaku 25:854–863 (In Japanese)Google Scholar
  34. Peierls RE (1935) Quelques propriétés typiques des corps solides. Ann I H Poincaré 5:177–222Google Scholar
  35. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Construction of tight-binding potentials on the basis of density-functional theory – Application to carbon. Phys Rev B 51:12947–12957CrossRefGoogle Scholar
  36. Radushkevich LV, Lukyanovich VM (1952) About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate. Zurn Fisic Chim 26:88–95 (in Russian)Google Scholar
  37. Schultz HP (1965) Topological organic chemistry. Polyhedranes and prismanes. J Org Chem 30:1361–1364CrossRefGoogle Scholar
  38. Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, Meijere A (2002) A rational chemical synthesis of C60. Science 295:1500–1503CrossRefGoogle Scholar
  39. Semenoff GW (1984) Condensed-matter simulation of a three-dimensional anomaly. Phys Rev Lett 53:2449–2452CrossRefGoogle Scholar
  40. Tapasztó L, Dobrik G, Lambin P, Bíró L (2008) Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography. Nat Nanotechnol 3:397–401CrossRefGoogle Scholar
  41. Terrones M, Banhart F, Grobert N, Charlier J-C, Terrones H, Ajayan PM (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505CrossRefGoogle Scholar
  42. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Pys Rev B 159:98–103Google Scholar
  43. Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Institute of PhysicsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Faculty of Technology SciencesSzéchenyi István UniversityGyőrHungary

Personalised recommendations