Skip to main content

Molecular Dynamics Simulation of Carbon Nanostructures: The Nanotubes

  • Chapter
  • First Online:
Book cover Distance, Symmetry, and Topology in Carbon Nanomaterials

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 9))

Abstract

Molecular dynamics calculations can reveal the physical and chemical properties of various carbon nanostructures or can help to devise the possible formation pathways. In our days the most well-known carbon nanostructures are the fullerenes, the nanotubes, and the graphene. The fullerenes and nanotubes can be thought of as being formed from graphene sheets, i.e., single layers of carbon atoms arranged in a honeycomb lattice. Usually the nature does not follow the mathematical constructions. Although the first time the C60 and the C70 were produced by laser-irradiated graphite, the fullerene formation theories are based on various fragments of carbon chains and networks of pentagonal and hexagonal rings. In the present article, using initial structures cut out from graphene will be presented in various formation pathways for the armchair (5,5) and zigzag (9,0) nanotubes. The interatomic forces in our molecular dynamics simulations will be calculated using tight-binding Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MP, Tildesley DJ (1996) PC computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  • Baggott J (1996) Perfect symmetry. The accidental discovery of buckminsterfullerene. Oxford University Press, Oxford/New York/Tokyo

    Google Scholar 

  • Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  Google Scholar 

  • Bochvar DA, Galpern EG (1973) Hypothetical systems: carbododecahedron, s-icosahedron and carbo-s-icosahedron. Dokl Acad Nauk SSSR 209:610–612 (In Russian)

    Google Scholar 

  • Boehm HP (1997) The first observation of carbon nanotubes. Carbon 35:581–584

    Article  Google Scholar 

  • Boorum MM, Vasil’ev YV, Drewello T, Scott LT (2001) Groundwork for rational synthesis of C60: cyclodehydrogenation of a C60H30 polyarene. Science 294:828–831

    Article  Google Scholar 

  • Chen Z, Lin Y, Rooks MJ, Avouris P (2007) Graphene nanoribbon electronics. Phys E 40:228–232

    Article  Google Scholar 

  • Chuvilin A, Kaiser U, Bichoutsskaia E, Besley NA, Khlobystov AN (2010) Direct transformation of graphene to fullerene. Nat Chem 2:450–453

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Academic Press, New York/London

    Google Scholar 

  • Fowler PW, Manolopulos DE (1995) An atlas of fullerenes. Clarendon Press, Oxford

    Google Scholar 

  • Frenkel S, Smit B (1996) Understanding molecular simulation. Academic Press, San Diego

    Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mat 6:183–191

    Article  Google Scholar 

  • Han MY, Ozylmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of band gap nanoribbons. Phys Rev Lett 98:206805

    Article  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A31:1965–1967

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56–58

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1nm diameter. Nature 363:603–605

    Article  Google Scholar 

  • Jones DEH (1966) Ariadne. New Scientist 32: 245–245.

    Google Scholar 

  • Krätschmer W (2011) The story of making fullerenes. Nanoscale 3:2485–2489

    Article  Google Scholar 

  • Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60. A new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  • Kroto HW (1992) C-60-Buckminsterfullerene, the celestial sphere that fell to earth. Angew Chem Int Ed 31:111–129

    Article  Google Scholar 

  • Kroto HK, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  • Landau LD (1937) Zur Theorie der Phasenumwandlungen II. Phys Z Sowjetunion 11:26–35

    Google Scholar 

  • Larsson S, Volosov A, Rosen A (1987) Optical spectrum of the icosahedral C60 – “follene-60”. Chem Phys Lett 137:501–504

    Article  Google Scholar 

  • László I (1998) Formation of cage-like C60 clusters in molecular-dynamics simulations. Europhys Lett 44:741–746

    Article  Google Scholar 

  • László I, Udvardi L (1987) On the geometrical structure and UV spectrum of the truncated icosahedron molecule. Chem Phys Lett 136:418–422

    Article  Google Scholar 

  • László I, Zsoldos I (2012a) Graphene-based molecular dynamics nanolithography of fullerenes, nanotubes and other carbon structures. Europhys Lett 99:63001p1–63001p5

    Google Scholar 

  • László I, Zsoldos I (2012b) Molecular dynamics simulation of carbon nanostructures: the C60 buckminsterfullerene. Phys Stat Solidi B 249:2616–2619

    Google Scholar 

  • László I, Zsoldos I (2014) Molecular dynamics simulation of carbon nanostructures: the D5h C70 fullerene. Phys E 56:422–426

    Article  Google Scholar 

  • Monthioux M, Kuznetsov VL (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–1623

    Article  Google Scholar 

  • Nosé S (1984) Molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • O’Rourke J (2011) How to fold it science of fullerenes and carbon nanotubes: their properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Osawa E (1970) Superaromaticity. Kagaku 25:854–863 (In Japanese)

    Google Scholar 

  • Peierls RE (1935) Quelques propriétés typiques des corps solides. Ann I H Poincaré 5:177–222

    Google Scholar 

  • Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Construction of tight-binding potentials on the basis of density-functional theory – Application to carbon. Phys Rev B 51:12947–12957

    Article  Google Scholar 

  • Radushkevich LV, Lukyanovich VM (1952) About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate. Zurn Fisic Chim 26:88–95 (in Russian)

    Google Scholar 

  • Schultz HP (1965) Topological organic chemistry. Polyhedranes and prismanes. J Org Chem 30:1361–1364

    Article  Google Scholar 

  • Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, Meijere A (2002) A rational chemical synthesis of C60. Science 295:1500–1503

    Article  Google Scholar 

  • Semenoff GW (1984) Condensed-matter simulation of a three-dimensional anomaly. Phys Rev Lett 53:2449–2452

    Article  Google Scholar 

  • Tapasztó L, Dobrik G, Lambin P, Bíró L (2008) Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography. Nat Nanotechnol 3:397–401

    Article  Google Scholar 

  • Terrones M, Banhart F, Grobert N, Charlier J-C, Terrones H, Ajayan PM (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505

    Article  Google Scholar 

  • Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Pys Rev B 159:98–103

    Google Scholar 

  • Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank for the support of grant TÁMOP-4.2.2/A-11/1/KONV-2012-0029 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István László .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

László, I., Zsoldos, I. (2016). Molecular Dynamics Simulation of Carbon Nanostructures: The Nanotubes. In: Ashrafi, A., Diudea, M. (eds) Distance, Symmetry, and Topology in Carbon Nanomaterials. Carbon Materials: Chemistry and Physics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-31584-3_1

Download citation

Publish with us

Policies and ethics