Skip to main content

Syzygies in Equivariant Cohomology for Non-abelian Lie Groups

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 14))

Abstract

We extend the work of Allday–Franz–Puppe on syzygies in equivariant cohomology from tori to arbitrary compact connected Lie groups G. In particular, we show that for a compact orientable G-manifold X the analogue of the Chang–Skjelbred sequence is exact if and only if the equivariant cohomology of X is reflexive, if and only if the equivariant Poincaré pairing for X is perfect. Along the way we establish that the equivariant cohomology modules arising from the orbit filtration of X are Cohen–Macaulay. We allow singular spaces and introduce a Cartan model for their equivariant cohomology. We also develop a criterion for the finiteness of the number of infinitesimal orbit types of a G-manifold.

The author was supported by an NSERC Discovery Grant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Using Propositions 5 and 7, one can show that H G(X) is isomorphic to the equivariant Borel–Moore homology H BM, ∗ G(X) as introduced by Edidin and Graham [16, Sect. 2.8].

  2. 2.

    The local contractability assumptions made there were needed to ensure that singular and Alexander–Spanier cohomology coincide. This is not necessary in our setting, cf. [4, Remark 2.17].

  3. 3.

    The stronger assumption of finitely many orbit types made in [4, Sect. 2.1] only serves to allow the use of singular cohomology for the quotient XT instead of Alexander–Spanier cohomology.

References

  1. A. Adem, J. Leida, Y. Ruan, Orbifolds and Stringy Topology (Cambridge University Press, Cambridge 2007). doi:10.1017/CBO9780511543081

    Book  MATH  Google Scholar 

  2. C. Allday, V. Puppe, Cohomological Methods in Transformation Groups (Cambridge University Press, Cambridge 1993). doi:10.1017/CBO9780511526275

    Book  MATH  Google Scholar 

  3. C. Allday, M. Franz, V. Puppe, Equivariant cohomology, syzygies and orbit structure. Trans. Am. Math. Soc. 366, 6567–6589 (2014). doi:10.1090/S0002-9947-2014-06165-5

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Allday, M. Franz, V. Puppe, Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property. Algebr. Geom. Topol. 14, 1339–1375 (2014). doi:10.2140/agt.2014.14.1339

    Article  MathSciNet  MATH  Google Scholar 

  5. T.J. Baird, Cohomology of the space of commuting n-tuples in a compact Lie group, Algebr. Geom. Topol. 7, 737–754 (2007). doi:10.2140/agt.2007.7.737

    Article  MathSciNet  MATH  Google Scholar 

  6. T.J. Baird, Classifying spaces of twisted loop groups. Algebr. Geom. Topol. 16, 211–229 (2016). doi:10.2140/agt.2016.16.211

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Borel, Seminar on Transformation Groups (Princeton University Press, Princeton, 1960)

    MATH  Google Scholar 

  8. G.E. Bredon, Sheaf Theory, 2nd edn. GTM, vol. 170 (Springer, New York, 1997). doi:10.1007/978-1-4612-0647-7

    Google Scholar 

  9. M. Brion, Equivariant cohomology and equivariant intersection theory, pp. 1–37 in Representation Theories and Algebraic Geometry edited by A. Broer, et al. (Montreal, 1997). NATO Adv. Sci. Inst. Ser. C, vol.514, (Kluwer, Dordrecht, 1998). doi:10.1007/978-94-015-9131-7_1

    Google Scholar 

  10. M. Brion, Poincaré duality and equivariant (co)homology, Mich. Math. J. 48, 77–92 (2000). doi:10.1307/mmj/1030132709

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Bruns, J. Herzog, Cohen–Macaulay Rings, 2nd edn., (Cambridge University Press, Cambridge 1998). doi:10.1017/CBO9780511608681

    MATH  Google Scholar 

  12. W. Bruns, U. Vetter, Determinantal Rings. LNM, vol. 1327 (Springer, Berlin 1988). doi:10.1007/BFb0080378

    Google Scholar 

  13. C. De Concini, C. Procesi, M. Vergne, The infinitesimal index. J. Inst. Math. Jussieu 12, 297–334 (2013). doi:10.1017/S1474748012000722

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Duflo, M. Vergne, Cohomologie équivariante et descente. Astérisque 215, 5–108 (1993)

    MathSciNet  Google Scholar 

  15. J. Duflot, Smooth toral actions. Topology 22, 253–265 (1983). doi:10.1016/0040-9383(83)90012-5

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Edidin, W. Graham, Equivariant intersection theory. Invent. Math. 131, 595–634 (1998). doi:10.1007/s002220050214

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Eisenbud, The Geometry of Syzygies. GTM, vol. 229 (Springer, New York, 2005). doi:10.1007/b137572

  18. M. Franz, A quotient criterion for syzygies in equivariant cohomology. Transform. Groups. arXiv:1205.4462v3 (to appear)

  19. M. Franz, Big polygon spaces. Int. Math. Res. Not. 2015, 13379–13405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. V.A. Ginzburg, Equivariant cohomology and Kähler’s geometry. Funct. Anal. Appl. 21, 271–283 (1987). doi:10.1007/BF01077801

    Article  MATH  Google Scholar 

  21. O. Goertsches, A.-L. Mare, Non-abelian GKM theory. Math. Z. 277, 1–27 (2014). doi:10.1007/s00209-013-1242-x

    Article  MathSciNet  MATH  Google Scholar 

  22. O. Goertsches, S. Rollenske, Torsion in equivariant cohomology and Cohen–Macaulay G-actions. Transform. Groups 16, 1063–1080 (2011). doi:10.1007/s00031-011-9154-5

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory (Springer, Berlin, 1999). doi:10.1007/978-3-662-03992-2

    Book  MATH  Google Scholar 

  24. V. Guillemin, V. Ginzburg, Y. Karshon, Moment Maps, Cobordisms, and Hamiltonian Group Actions (AMS, Providence, RI, 2002). doi:10.1090/surv/098

    Book  MATH  Google Scholar 

  25. J.M. Kister, L.N. Mann, Isotropy structure of compact Lie groups on complexes. Mich. Math. J. 9, 93–96 (1962). doi:10.1307/mmj/1028998627

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Kostant, Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963). doi:10.2307/2373130

    Google Scholar 

  27. E. Lerman, S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties. Trans. Am. Math. Soc. 349, 4201–4230 (1997). doi:10.1090/S0002-9947-97-01821-7

    Article  MathSciNet  MATH  Google Scholar 

  28. L.N. Mann, Finite orbit structure on locally compact manifolds. Mich. Math. J. 9, 87–92 (1962). doi:10.1307/mmj/1028998626

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Meinrenken, Symplectic surgery and the \(\mathop{\mathrm{Spin}}\nolimits ^{c}\)-Dirac operator. Adv. Math. 134, 240–277 (1998). doi:10.1006/aima.1997.1701

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Meinrenken, Witten’s formulas for intersection pairings on moduli spaces of flat G-bundles. Adv. Math. 197, 140–197 (2005). doi:10.1016/j.aim.2004.10.002

    Article  MathSciNet  MATH  Google Scholar 

  31. L.I. Nicolaescu, On a theorem of Henri Cartan concerning the equivariant cohomology. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 45, 17–38 (1999), http://www.math.uaic.ro/~annalsmath/F1-1999.htm

  32. E.H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966)

    MATH  Google Scholar 

  33. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Springer, New York, 1983). doi:10.1007/978-1-4757-1799-0

    Book  MATH  Google Scholar 

  34. C.-T. Yang, On a problem of Montgomery. Proc. Am. Math. Soc. 8, 255–257 (1957). doi:10.1090/S0002-9939-1957-0087040-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Chris Allday, Andrey Minchenko, Volker Puppe, Reyer Sjamaar and Andrzej Weber for helpful discussions, and the organizers of the conference “Configuration Spaces” for creating a stimulating environment in an extraordinary place. I am also indebted to the referee for a very careful reading and for several valuable suggestions and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Franz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franz, M. (2016). Syzygies in Equivariant Cohomology for Non-abelian Lie Groups. In: Callegaro, F., Cohen, F., De Concini, C., Feichtner, E., Gaiffi, G., Salvetti, M. (eds) Configuration Spaces. Springer INdAM Series, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-31580-5_14

Download citation

Publish with us

Policies and ethics