Skip to main content

On the Twisted Cohomology of Affine Line Arrangements

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 14))

Abstract

Let \(\mathcal{A}\) be an affine line arrangement in \(\mathbb{C}^{2}\), with complement \(\mathcal{M}(\mathcal{A})\). The twisted (co)homology of \(\mathcal{M}(\mathcal{A})\) is an interesting object which has been considered by many authors. In this paper we give a vanishing conjecture of a different nature with respect to the known results: namely, we conjecture that if the graph of double points of the arrangement is connected then there is no nontrivial monodromy. This conjecture is obviously combinatorial (meaning that it depends only on the lattice of the intersections). We prove it in some cases with stronger hypotheses. We also consider the integral case, relating the property of having trivial monodromy over \(\mathbb{Z}\) with a certain property of “commutativity” of the fundamental group up to some subgroup. At the end, we give several examples and computations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Biggs, Algebraic Graph Theory (Cambridge University Press, Cambridge, 1974)

    Book  MATH  Google Scholar 

  2. J. Birman, Braids, Links and Mapping Class Groups (Princeton University Press, Princeton, 1975)

    Book  MATH  Google Scholar 

  3. F. Callegaro, The homology of the Milnor fibre for classical braid groups. Algebra Geom. Topol. 6, 1903–1923 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Callegaro, D. Moroni, M. Salvetti, The K(π, 1) problem for the affine Artin group of type \(\tilde{B}_{n}\) and its cohomology. J. Eur. Math. Soc. 12, 1–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Cohen, P. Orlik, Arrangements and local systems. Math. Res. Lett. 7 (2–2), 299–316 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Cohen, A. Suciu, Characteristic varieties of arrangements. Math. Proc. Camb. Philos. Soc. 127, 33–53 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. De Concini, M. Salvetti, Cohomology of Artin groups. Math. Res. Lett. 3 (2), 293–297 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. De Concini, C. Procesi, M. Salvetti, F. Stumbo, Arithmetic properties of the cohomology of Artin groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (4), 695–717 (1999)

    Google Scholar 

  9. C. De Concini, C. Procesi, M. Salvetti, Arithmetic properties of the cohomology of braid groups. Topology 40 (4), 739–751 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dimca, S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. Math. (2) 158 (2), 473–507 (2003)

    Google Scholar 

  11. A. Dimca, S. Papadima, A. Suciu Topology and geometry of cohomology jump loci. Duke Math. J. 148, 405–457 (2009)

    Google Scholar 

  12. M.J. Falk, Arrangements and cohomology. Ann. Comb. 1 (2), 135–157 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.J. Falk, S. Yuzvinsky Multinets, resonance varieties and pencils of plane curves. Compos. Math. 143, 10069–1088 (2007)

    Google Scholar 

  14. R. Forman, Morse theory for cell complexes. Adv. Math. 134 (1), 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. E.V. Frenkel, Cohomology of the commutator subgroup of the braid group. Func. Anal. Appl. 22 (13), 248–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Gaiffi, M. Salvetti The Morse complex of a line arrangement. J. Algebra 321, 316–337 (2009)

    Google Scholar 

  17. G. Gaiffi, F. Mori, M. Salvetti Minimal CW-complexes for complement to line arrangements via discrete Morse theory, in Topology of Algebraic Varieties and Singularities. Contemporary Mathematics, vol. 538 (American Mathematical Society, Providence, 2011), pp. 293–308

    Google Scholar 

  18. A. Libgober, S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems. Compos. Math. 21, 337–361 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Okonek, Das K(π, 1)-Problem für die affinen Wurzelsysteme vom Typ A n , C n . Math. Z. 168, 143–148 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Randell, Morse theory, Milnor fibers and minimality of a complex hyperplane arrangement. Proc. Am. Math. Soc. 130 (9), 2737–2743 (2002)

    MathSciNet  MATH  Google Scholar 

  21. M. Salvetti, Topology of the complement of real hyperplanes in \(\mathbb{C}^{n}\). Invent. Math. 88 (3), 603–618 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Salvetti, The homotopy type of Artin groups. Math. Res. Lett. 1, 567–577 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Salvetti, S. Settepanella, Combinatorial Morse theory and minimality of hyperplane arrangements. Geom. Topol. 11, 1733–1766 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Settepanella, Cohomology of pure Braid groups of exceptional cases. Topol. Appl. 156, 1008–1012 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Suciu, Translated tori in the characteristic varieties of complex hyperplane arrangements. Topol. Appl. 118, 209–223 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Yoshinaga, Resonant bands and local system cohomology groups for real line arrangements. Vietnam J. Math. 42 (3), 377–392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Salvetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salvetti, M., Serventi, M. (2016). On the Twisted Cohomology of Affine Line Arrangements. In: Callegaro, F., Cohen, F., De Concini, C., Feichtner, E., Gaiffi, G., Salvetti, M. (eds) Configuration Spaces. Springer INdAM Series, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-31580-5_11

Download citation

Publish with us

Policies and ethics