Skip to main content

Phenotypic Expression and Genetics of J Wave Syndrome in the Early Stage of Arrhythmogenic Right Ventricular Cardiomyopathy

  • Chapter
  • First Online:
J Wave Syndromes

Abstract

Arrhythmogenic right ventricular cardiomyopathy (ARVC) and J-wave/Brugada syndromes are inherited conditions which predispose to arrhythmic sudden cardiac death. However, they have been traditionally considered separate entities: ARVC is a heart muscle disorder characterized by loss of right ventricular myocardium with fibrofatty substitution while Brugada syndrome is a primary electrical heart disease with no overt structural myocardial abnormalities. Past studies have demonstrated a possible phenotypic overlap suggesting a pathogenetic link between the two diseases. This article reviews the recent scientific evidence coming from cellular and animal experimental studies and genotype-phenotype correlations which may explain the relation between ARVC and J-wave/Brugada syndromes on the basis of a molecular crosstalk between desmosomal-proteins and sodium channel-proteins in the setting of the connexome. Clinical implications of this interrelationship are discussed, with particular reference to the arrhythmic risk during the “concealed phase” of ARVC (i.e., before the structural disease phenotype occurs), when young DS-gene carriers might experience ventricular fibrillation and sudden cardiac death due to a primarily electrical mechanism involving a sodium current reduction, similarly to patients with J-wave/Brugada syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiene G, Nava A, Corrado D, Rossi L, Pennelli N. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med. 1988;318:129–33.

    Article  CAS  PubMed  Google Scholar 

  2. Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, Grosgogeat Y. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982;65:384–98.

    Article  CAS  PubMed  Google Scholar 

  3. Corrado D, Basso C, Thiene G, et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol. 1997;30:1512–20.

    Article  CAS  PubMed  Google Scholar 

  4. Corrado D, Basso C, Thiene G. Arrhythmogenic right ventricular cardiomyopathy: diagnosis, prognosis, and treatment. Heart. 2000;83:588–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basso C, Corrado D, Marcus FI, Nava A, Thiene G. Arrhythmogenic right ventricular cardiomyopathy. Lancet. 2009;373:1289–300.

    Article  PubMed  Google Scholar 

  6. Corrado D, Basso C, Thiene G. Arrhythmogenic right ventricular cardiomyopathy: an update. Heart. 2009;95:766–73.

    Article  CAS  PubMed  Google Scholar 

  7. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.

    Article  CAS  PubMed  Google Scholar 

  8. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies. Circulation. 2006;113:1807–16.

    Article  PubMed  Google Scholar 

  9. Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. Circulation. 2006;113(13):1634–7.

    Article  PubMed  Google Scholar 

  10. Corrado D, Basso C, Pilichou K, Thiene G. Molecular biology and clinical management of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart. 2011;97:530–9.

    Article  CAS  PubMed  Google Scholar 

  11. Basso C, Bauce B, Corrado D, Thiene G. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol. 2012;9:223–33.

    Article  CAS  Google Scholar 

  12. Calore M, Lorenzon A, De Bortoli M, Poloni G, Rampazzo A. Arrhythmogenic cardiomyopathy: a disease of intercalated discs. Cell Tissue Res. 2015;360(3):491–500.

    Article  CAS  PubMed  Google Scholar 

  13. Bauce B, Basso C, Rampazzo A, Beffagna G, Daliento L, Frigo G, Malacrida S, Settimo L, Danieli G, Thiene G, Nava A. Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J. 2005;26:1666–75.

    Article  CAS  PubMed  Google Scholar 

  14. Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation. 2007;115:1710–20.

    Article  PubMed  Google Scholar 

  15. Sen-Chowdhry S, Syrris P, Prasad SK, Hughes SE, Merrifield R, Ward D, Pennell DJ, McKenna WJ. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol. 2008;52:2175–87.

    Article  PubMed  Google Scholar 

  16. Marra MP, Leoni L, Bauce B, Corbetti F, Zorzi A, Migliore F, Silvano M, Rigato I, Tona F, Tarantini G, Cacciavillani L, Basso C, Buja G, Thiene G, Iliceto S, Corrado D. Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy: comparison of 3D standard electroanatomical voltage mapping and contrast-enhanced cardiac magnetic resonance. Circ Arrhythm Electrophysiol. 2012;5:91–100.

    Article  PubMed  Google Scholar 

  17. te Riele AS, Bhonsale A, James CA, Rastegar N, Murray B, Burt JR, Tichnell C, Madhavan S, Judge DP, Bluemke DA, Zimmerman SL, Kamel IR, Calkins H, Tandri H. Incremental value of cardiac magnetic resonance imaging in arrhythmic risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013;62:1761–9.

    Article  Google Scholar 

  18. Rampazzo A, Nava A, Danieli G, Buja G, Daliento L, Fasoli G, Scognamiglio R, Corrado D, Thiene G. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24. Hum Mol Genet. 1994;3:959–62.

    Article  CAS  PubMed  Google Scholar 

  19. Rigato I, Bauce B, Rampazzo A, Zorzi A, Pilichou K, Mazzotti E, Migliore F, Marra MP, Lorenzon A, De Bortoli M, Calore M, Nava A, Daliento L, Gregori D, Iliceto S, Thiene G, Basso C, Corrado D. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2013;6(6):533–42.

    Article  CAS  PubMed  Google Scholar 

  20. McKenna WJ, Thiene G, Nava A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Br Heart J. 1994;71:215–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010;31:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Van Tintelen JP, Entius MM, Bhruiyan ZA, et al. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2006;113:1650–8.

    Article  PubMed  Google Scholar 

  23. Delmar M, McKenna WJ. The cardiac desmosome and arrhythmogenic cardiomyopathy: from gene to disease. Circ Res. 2010;107:700–14.

    Article  CAS  PubMed  Google Scholar 

  24. Nava A, Thiene G, Canciani B, et al. Familial occurrence of right ventricular dysplasia: a study involving nine families. J Am Coll Cardiol. 1988;12:1222–8.

    Article  CAS  PubMed  Google Scholar 

  25. Coonar AS, Protonotarios N, Tsatsopoulou A, et al. Gene for arrhythmogenic right ventricular cardiomyopathywith diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation. 1998;97:2049–58.

    Article  CAS  PubMed  Google Scholar 

  26. Huber O. Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci. 2003;60:1872–90.

    Article  CAS  PubMed  Google Scholar 

  27. McKoy G, Protonotarios N, Crosby A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet. 2000;355:2119–24.

    Article  CAS  PubMed  Google Scholar 

  28. Norgett EE, Hatsell SJ, Carvajal-Huerta L, et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet. 2000;9:2761–6.

    Article  CAS  PubMed  Google Scholar 

  29. Rampazzo A, Nava A, Malacrida S, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71:1200–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gerull B, Heuser A, Wichter T, et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet. 2004;36:1162–4.

    Article  CAS  PubMed  Google Scholar 

  31. Dalal D, Molin LH, Piccini J, et al. Clinical features of arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation. 2006;113:1641–9.

    Article  CAS  PubMed  Google Scholar 

  32. Pilichou K, Nava A, Basso C, et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation. 2006;113:1171–9.

    Article  CAS  PubMed  Google Scholar 

  33. Syrris P, Ward D, Evans A, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet. 2006;79:978–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Franke WW, Borrmann CM, Grund C, Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol. 2006;85:69–82.

    Article  CAS  PubMed  Google Scholar 

  35. Goossens S, Janssens B, Bonné S, De Rycke R, Braet F, van Hengel J, van Roy F. A unique and specific interaction between alphaTcatenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J Cell Sci. 2007;120:2126–36.

    Article  CAS  PubMed  Google Scholar 

  36. van Hengel J, Calore M, Bauce B, Dazzo E, Mazzotti E, De Bortoli M, Lorenzon A, Li Mura IE, Beffagna G, Rigato I, Vleeschouwers M, Tyberghein K, Hulpiau P, van Hamme E, Zaglia T, Corrado D, Basso C, Thiene G, Daliento L, Nava A, van Roy F, Rampazzo A. Mutations in the area composita protein alpha-T-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2013;34:201–10.

    Article  PubMed  Google Scholar 

  37. Merner ND, Hodgkinson KA, Haywood AF, et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet. 2008;82:809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franke WW, Dörflinger Y, Kuhn C, Zimbelmann R, Winter-Simanowski S, Frey N, Heid H. Protein LUMA is a cytoplasmic plaque constituent of various epithelial adherens junctions and composite junctions of myocardial intercalated disks: a unifying finding for cell biology and cardiology. Cell Tissue Res. 2014;357:159–72.

    Article  CAS  PubMed  Google Scholar 

  39. Tiso N, Stephan DA, Nava A, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001;10:189–94.

    Article  CAS  PubMed  Google Scholar 

  40. Beffagna G, Occhi G, Nava A, et al. Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res. 2005;65:366–73.

    Article  CAS  PubMed  Google Scholar 

  41. Yang Z, Bowles NE, Scherer SE, et al. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Res. 2006;99:646–55.

    Article  CAS  PubMed  Google Scholar 

  42. Basso C, Czarnowska E, Della Barbera M, et al. Ultrastructural evidence of intercalated disc remodelling in arrhythmogenic right ventricular cardiomyopathy: an electron microscopy investigation on endomyocardial biopsies. Eur Heart J. 2006;27:1847–54.

    Article  PubMed  Google Scholar 

  43. Saffitz JE. Dependence of electrical coupling on mechanical coupling in cardiac myocytes: insights gained from cardiomyopathies caused by defects in cell-cell connections. Ann N Y Acad Sci. 2005;1047:336–44.

    Article  CAS  PubMed  Google Scholar 

  44. Kaplan SR, Gard JJ, Protonotarios N, et al. Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm. 2004;1:3–11.

    Article  PubMed  Google Scholar 

  45. Kaplan SR, Gard JJ, Carvajal-Huerta L, Ruiz-Cabezas JC, Thiene G, Saffitz JE. Structural and molecular pathology of the heart in Carvajal syndrome. Cardiovasc Pathol. 2004;13:26–32.

    Article  CAS  PubMed  Google Scholar 

  46. Tandri H, Asimaki A, Dalal D, Saffitz JE, Halushka MK, Calkins H. Gap junction remodeling in a case of arrhythmogenic right ventricular dysplasia due to plakophilin-2 mutation. J Cardiovasc Electrophysiol. 2008;19:1212–4.

    Article  PubMed  Google Scholar 

  47. Fidler LM, Wilson GJ, Liu F, et al. Abnormal connexion-43 in arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 mutations. J Cell Mol Med. 2009;13:4219–28.

    Article  CAS  PubMed  Google Scholar 

  48. Kirchhof P, Fabritz L, Zwiener M, et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation. 2006;114:1799–806.

    Article  PubMed  Google Scholar 

  49. Garcia-Gras E, Lombardi R, Giocondo MJ, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116:2012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pilichou K, Remme CA, Basso C, et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. J Exp Med. 2009;206:1787–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verma A, Kilicaslan F, Schweikert RA, Tomassoni G, Rossillo A, Marrouche NF, Ozduran V, Wazni OM, Elayi SC, Saenz LC, Minor S, Cummings JE, Burkhardt JD, Hao S, Beheiry S, Tchou PJ, Natale A. Short- and long-term success of substrate-based mapping and ablation of ventricular tachycardia in arrhythmogenic right ventricular dysplasia. Circulation. 2005;111:3209–16.

    Article  PubMed  Google Scholar 

  52. Corrado D, Basso C, Pavei A, Michieli P, Schiavon M, Thiene G. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA. 2006;296(13):1593–601.

    Article  CAS  PubMed  Google Scholar 

  53. James CA, Bhonsale A, Tichnell C, Murray B, Russell SD, Tandri H, Tedford RJ, Judge DP, Calkins H. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013;62(14):1290–7.

    Article  PubMed  Google Scholar 

  54. Thiene G, Corrado D, Nava A, Rossi L, Poletti A, Boffa GM, Daliento L, Pennelli N. Right ventricular cardiomyopathy: is there evidence of an inflammatory aetiology? Eur Heart J. 1991;12(Suppl D):22–5.

    Article  PubMed  Google Scholar 

  55. Patrianakos AP, Protonotarios N, Nyktari E, Pagonidis K, Tsatsopoulou A, Parthenakis FI, Vardas PE. Arrhythmogenic right ventricular cardiomyopathy/dysplasia and troponin release. Myocarditis or the “hot phase” of the disease? Int J Cardiol. 2012;157:e26–8.

    Article  CAS  PubMed  Google Scholar 

  56. Delmar M. Desmosome-ion channel interactions and their possible role in arrhythmogenic cardiomyopathy. Pediatr Cardiol. 2012;33:975–9.

    Article  PubMed  Google Scholar 

  57. Delmar M. The intercalated disk as a single functional unit. Heart Rhythm. 2004;1:12–3.

    Article  PubMed  Google Scholar 

  58. Cerrone M, Delmar M. Desmosomes and the sodium channel complex: implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends Cardiovasc Med. 2014;24:184–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Agullo-Pascual E, Cerrone M, Delmar M. Arrhythmogenic cardiomyopathy and Brugada syndrome: diseases of the connexome. FEBS Lett. 2014;588:1322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sato PY, Musa H, Coombs W, et al. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ Res. 2009;105:523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sato PY, Coombs W, Lin X, et al. Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ Res. 2011;109:193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cerrone M, Noorman M, Lin X, et al. Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. Cardiovasc Res. 2012;95:460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gomes J, Finlay M, Ahmed AK, et al. Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study. Eur Heart J. 2012;33:1942–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Noorman M, Hakim S, Kessler E, et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm. 2013;10:412–9.

    Article  PubMed  Google Scholar 

  65. Rizzo S, Lodder EM, Verkerk AO, et al. Intercalated disc abnormalities, reduced Na current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc Res. 2012;95:409–18.

    Article  CAS  PubMed  Google Scholar 

  66. Martini B, Nava A, Thiene G, et al. Ventricular fibrillation without apparent heart disease: description of 6 cases. Am Heart J. 1989;118:1203–9.

    Article  CAS  PubMed  Google Scholar 

  67. Corrado D, Nava A, Buja GF, et al. Familial cardiomyopathy underlies syndrome of right bundle branch block, ST-segment elevation and sudden death. J Am Coll Cardiol. 1996;27:443–8.

    Article  CAS  PubMed  Google Scholar 

  68. Tada H, Aihara N, Ohe T, et al. Arrhythmogenic right ventricular cardiomyopathy underlies syndrome of right bundle branch block, ST segment elevation, and sudden death. Am J Cardiol. 1998;81:519–22.

    Article  CAS  PubMed  Google Scholar 

  69. Corrado D, Basso C, Buja G, Nava A, Rossi L, Thiene G. Right bundle branch block, right precordial ST-segment elevation, and sudden death in young people. Circulation. 2001;103:710–7.

    Article  CAS  PubMed  Google Scholar 

  70. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference. Circulation. 2005;111:659–70.

    Article  PubMed  Google Scholar 

  71. Antzelevitch C. The Brugada syndrome. J Cardiovasc Electrophysiol. 1998;9:513–6.

    Article  CAS  PubMed  Google Scholar 

  72. Xan G-X, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation. 1999;100:1660–6.

    Article  Google Scholar 

  73. Cerrone M, Lin X, Zhang M, Agullo-Pascual E, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2014;11(129):1092–103.

    Article  Google Scholar 

  74. Markus F, Nava A, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Milan: Springer; 2007.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Corrado MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corrado, D., Cerrone, M., Zorzi, A., Delmar, M. (2016). Phenotypic Expression and Genetics of J Wave Syndrome in the Early Stage of Arrhythmogenic Right Ventricular Cardiomyopathy. In: Antzelevitch, C., Yan, GX. (eds) J Wave Syndromes. Springer, Cham. https://doi.org/10.1007/978-3-319-31578-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31578-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31576-8

  • Online ISBN: 978-3-319-31578-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics