Skip to main content

RRAMs with Organic Donor and Acceptor

  • Chapter
  • First Online:
  • 626 Accesses

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Conjugated organic molecules or polymers can be oxidized or reduced. In terms of the redox properties of organic molecules or polymers, they are classified into donor and acceptor. Oxidation or reduction can take place through chemical or electrochemical reaction. After oxidation or reduction, the conductivity of the conjugated organic molecules or polymers is dramatically increased, because the oxidation or reduction can induce charges on the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of the organic molecule or polymer. Since the HOMO and LUMO are conjugated π and π* orbitals, respectively, the charges are delocalized. For example, charge-transfer complexes of tetrathiafulvalene (TTF, donor) or TCNQ (acceptor) can have high conductivity [1, 2], and many conjugated polymers like polypyrrole, polythiophene, and PANi become highly conductive after oxidation [3]. Photon can also induce charge transfer between organic donor and acceptor, which is the principle of organic photovoltaic cells [4]. Resistive switches have been observed on devices with organic donor and acceptor. They are attributed to the electric-field induced charge transfer between the organic donor and acceptor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferraris J, Cowan DO, Walakta V, Perlstein J, Perlstein JH (1973) Electron transfer in a new highly conducting donor-acceptor complex. J Am Chem Soc 95:948

    Article  Google Scholar 

  2. Bright AA, Garito AF, Heeger AJ (1973) Optical properties of (TTF) (TCNQ) in the visible and infrared. Solid State Commun 13:943

    Article  Google Scholar 

  3. Skotheim TA, Dekker M (1986) Handbook of conducting polymers. Dekker, New York

    Google Scholar 

  4. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474

    Article  Google Scholar 

  5. Chu CW, Ouyang J, Yang Y (2005) Organic donor-acceptor system for the electrical bistability and memory effects. Adv Mater 17:1440

    Article  Google Scholar 

  6. Martín N, Ortí E, Sánchez L, Viruela PM, Viruela R (1999) A new type of π-electron donors with one dithiole unit: substituted 7-(1,3-dithiol-2-ylidene)-7-hydrobenz[d,e]anthracenes. Eur J Org Chem 1999:1239

    Google Scholar 

  7. Brebec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 15:11

    Google Scholar 

  8. Laurent C, Kay E (1988) Dielectric breakdown of polymer films containing metal clusters. J Appl Phys 64:336

    Article  Google Scholar 

  9. Vollmann W, Poll HU (1975) Electrical conduction in thin polymer fluorocarbon films. Thin Solid Films 26:201

    Article  Google Scholar 

  10. Mukherjee B, Pal AJ (2007) Write-once-read-many-times (WORM) memory applications in a monolayer of donor/acceptor supramolecule. Chem Mater 19:1382

    Article  Google Scholar 

  11. Choi JS, Kim JH, Kim SH, Suh DH (2006) Nonvolatile memory device based on the switching by the all-organic charge transfer complex. Appl Phys Lett 89:152111

    Article  Google Scholar 

  12. Hu Z, Gesquiere AJ (2011) Charge trapping and storage by composite P3HT/PC60BM nanoparticles investigated by fluorescence-voltage/single particle spectroscopy. J Am Chem Soc 133:20850

    Article  Google Scholar 

  13. Sim R, Ming W, Setiawan Y, Lee PS (2013) Dependencies of donor–acceptor memory on molecular levels. J Phys Chem C 117:677

    Article  Google Scholar 

  14. Chen CJ, Hu YC, Liou GS (2013) Electrically bistable memory devices based on poly(triphenylamine)–PCBM hybrids. Chem Commun 49:2804

    Article  Google Scholar 

  15. Chen CJ, Wu JH, Liou GS (2014) Thermally stable and high ON/OFF ratio non-volatile memory devices based on poly(triphenylamine) with pendent PCBM. Chem Commun 50:4335

    Article  Google Scholar 

  16. Liu H, Zhuang H, Li H, Lu J, Wang L (2014) Electronic effect of terminal acceptor groups on different organic donor–acceptor small-molecule based memory devices. Phys Chem Chem Phys 16:17125

    Article  Google Scholar 

  17. Shang Y, Wen Y, Li S, Du S, He X, Cai L, Li Y, Yang L, Gao H, Song Y (2007) A triphenylamine-containing donor−acceptor molecule for stable, reversible, ultrahigh density data storage. J Am Chem Soc 129:11674

    Article  Google Scholar 

  18. Lee WY, Kurosawa T, Lin ST, Higashihara T, Ueda M, Chen WC (2011) New donor–acceptor oligoimides for high-performance nonvolatile memory devices. Chem Mater 23:4487

    Article  Google Scholar 

  19. Liu CL, Chen WC (2011) Donor–acceptor polymers for advanced memory device applications. Polym Chem 2:2169

    Article  Google Scholar 

  20. Wang C, Hu B, Wang J, Gao J, Li G, Xiong WW, Zou B, Suzuki M, Aratani N, Yamada H, Huo F, Lee PS, Zhang Q (2015) Rewritable multilevel memory performance of a tetraazatetracene donor–acceptor derivative with good endurance. Chem Asian J 10:116

    Article  Google Scholar 

  21. Hu J, Li Y, Ji Z, Jiang G, Yang L, Hu W, Gao H, Jiang L, Wen Y, Song Y, Zhu D (2007) A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage. J Mater Chem 17:3530

    Article  Google Scholar 

  22. Chappell JS, Bloch AN, Bryden WA, Maxfield M, Poehler TO, Cowan DO (1981) Degree of charge transfer in organic conductors by infrared absorption spectroscopy. J Am Chem Soc 103:2442

    Article  Google Scholar 

  23. Ouyang J, Yakushi K, Kinoshita T, Nanbu N, Aoyagi M, Misaki Y, Tanaka K (2002) The assignment of the in-plane molecular vibrations of the BDT-TTP electron-donor molecule based on the polarized Raman and infrared spectra, where BDT-TTP is 2,5-bis(1,3-dithol-2-ylidene)-1,3,4,6-tetrathiapentalene. Spectrochim Acta Part A 58:1643

    Article  Google Scholar 

  24. Ouyang J, Yakushi K, Misaki Y, Tanaka K (2001) Raman spectroscopic evidence for the charge disproportionation in a quasi-two-dimensional organic conductor θ-(BDT-TTP)2Cu(NCS)2. Phys Rev B 63:054301

    Article  Google Scholar 

  25. Fang YK, Liu CL, Li C, Lin CJ, Mezzenga R, Chen WC (2010) Synthesis, morphology, and properties of poly(3-hexylthiophene)-block-poly(vinylphenyl oxadiazole) donor–acceptor rod–coil block copolymers and their memory device applications. Adv Funct Mater 20:3012

    Article  Google Scholar 

  26. Zhang B, Liu G, Chen Y, Wang C, Neoh KG, Bai T, Kang ET (2012) Electrical bistability and WORM memory effects in donor-acceptor polymers based on poly(N-vinylcarbazole). ChemPlusChem 77:74

    Article  Google Scholar 

  27. Zhuang XD, Chen Y, Li BX, Ma DG, Zhang B, Li Y (2010) Polyfluorene-based push−pull type functional materials for write-once-read-many-times memory devices. Chem Mater 22:4455

    Article  Google Scholar 

  28. Fang YK, Liu CL, Chen WC (2011) New random copolymers with pendant carbazole donor and 1,3,4-oxadiazole acceptor for high performance memory device applications. J Mater Chem 21:4778

    Article  Google Scholar 

  29. Fang YK, Liu CL, Yang GY, Chen PC, Chen WC (2011) New donor–acceptor random copolymers with pendent triphenylamine and 1,3,4-oxadiazole for high-performance memory device applications. Macromolecules 44:2604

    Article  Google Scholar 

  30. Liu YL, Ling QD, Kang ET, Neoh KG, Liaw DJ, Wang KL, Liou WT, Zhu CX, Chan DSH (2009) Volatile electrical switching in a functional polyimide containing electron-donor and -acceptor moieties. J Appl Phys 105:044501

    Article  Google Scholar 

  31. Liu CL, Kurosawa T, Yu AD, Higashihara T, Ueda M, Chen WC (2011) New dibenzothiophene-containing donor−acceptor polyimides for high-performance memory device applications. J Phys Chem C 115:5930

    Article  Google Scholar 

  32. Liu SJ, Lin ZH, Zhao Q, Ma Y, Shi HF, Yi MD, Ling QD, Fan QL, Zhu CX, Kang ET, Huang W (2011) Flash-memory effect for polyfluorenes with on-chain Iridium(III) complexes. Adv Funct Mater 21:979

    Article  Google Scholar 

  33. Ling QD, Wang W, Song Y, Zhu CX, Chan DSH, Kang ET, Neoh KG (2006) Bistable electrical switching and memory effects in a thin film of copolymer containing electron donor−acceptor moieties and europium complexes. J Phys Chem B 110:23995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Ouyang, J. (2016). RRAMs with Organic Donor and Acceptor. In: Emerging Resistive Switching Memories. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-31572-0_4

Download citation

Publish with us

Policies and ethics