Inpatient Neonatal Dermatology

  • Kimberly Jablon
  • Erin MathesEmail author


This chapter discusses five cutaneous conditions seen in the newborn period that have implications for the health of the newborn: subcutaneous fat necrosis of the newborn, aplasia cutis, congenital melanocytic nevus, neonatal lupus, and incontinentia pigmenti. Neonatal subcutaneous fat necrosis is a disorder that presents with erythematous nodules in the newborn. It is a self-resolving condition associated with neonatal stress or hypothermia, and may be complicated by hypercalcemia. Aplasia cutis congenita is a heterogeneous group of disorders with many genetic and environmental causes, which all present with absence of the epidermis, and sometimes deeper tissues. Most lesions heal spontaneously with standard wound care, although larger lesions may need to be treated surgically. Neonatal lupus is a transient, passively acquired immune disorder due to maternal antibodies that can affect the skin, heart, and blood. The most serious risk is congenital heart block, which can be permanent and must be screened for carefully. Giant congenital melanocytic nevi are benign proliferations of melanocytes that may be associated with neurocutaneous melanocytosis and malignant melanoma. Proper surveillance for complications and avoidance of unnecessary prophylactic treatment is crucial. Incontinentia pigmenti is a rare dominant X-linked genetic disorder that presents with four distinct stages of skin lesions following the lines of Blaschko. Other systems that may be affected include the central nervous, dental, and ophthalmologic systems.


Neonatal subcutaneous fat necrosis Neonatal lupus Anti-Ro/La antibodies Lines of Blaschko Incontinentia pigmenti Melanocytic nevus Cutis aplasia Hypercalcemia Neurocutaneous melanosis Congenital heart block 


  1. 1.
    Mahé E, Girszyn N, Hadj-Rabia S, et al. Subcutaneous fat necrosis of the newborn: a systematic evaluation of risk factors, clinical manifestations, complications and outcome of 16 children. Br J Dermatol. 2007;156:709–15.CrossRefPubMedGoogle Scholar
  2. 2.
    Grass B, Weibel L, Hagmann C, et al. Subcutaneous fat necrosis in neonates with hypoxic ischaemic encephalopathy registered in the Swiss National Asphyxia and Cooling Register. BMC Pediatr. 2015;15:73.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Samedi V, Yusuf K, Yee W, et al. Neonatal hypercalcemia secondary to subcutaneous fat necrosis successfully treated with pamidronate: a case series and literature review. Am J Perinatol. 2014;4(2):93–6.CrossRefGoogle Scholar
  4. 4.
    Shumer D, Thaker V, Taylor G, et al. Severe hypercalcaemia due to subcutaneous fat necrosis: presentation, management and complications. Arch Dis Child Fetal Neonatal Ed. 2014;99:419–21.CrossRefGoogle Scholar
  5. 5.
    Brzezinski P, Pinteala AE, Foia L, et al. Aplasia cutis congenita of the scalp—what are the steps to be followed? Case report and review of the literature. An Bras Dermatol. 2015;90(1):100–3.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Frieden IJ. Aplasia cutis congenita: a clinical review and proposal for classification. J Am Acad Dermatol. 1986;14:646–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Eichenfield LF, Frieden IJ, Mathes EF, Zaenglein AL, editors. Neonatal and infant dermatology. 3rd ed. Philadelphia: Elsevier Saunders; 2015.Google Scholar
  8. 8.
    Evers ME, Steijlen PM, Hamel BC. Aplasia cutis congenita and associated disorders: an update. Clin Genet. 1995;47(6):295–301.CrossRefPubMedGoogle Scholar
  9. 9.
    Burkhead JA, Poindexter G, Morrell DS. A case of extensive aplasia cutis congenita with underlying skull defect and central nervous system malformation: discussion of large skin defects, complications, treatment and outcome. J Perinatol. 2009;29:582–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Krengel S, Scope A, Dusza SW, Vonthein R, Marghoob AA. New recommendations for the categorization of cutaneous features of congenital melanocytic nevi. J Am Acad Dermatol. 2013;68(3):441–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Arneja JS, Gosain AK. Giant congenital melanocytic nevi. Plast Reconstr Surg. 2007;120(2):26–40.CrossRefGoogle Scholar
  12. 12.
    Marano AA, Feintisch AM, Datiashvili R. Giant congenital melanocytic nevus of the buttock. Eplasty. 2015;5:31.Google Scholar
  13. 13.
    Krengel S, Marghoob AA. Current management approaches for congenital melanocytic nevi. Dermatol Clin. 2012;30(3):377–87.CrossRefPubMedGoogle Scholar
  14. 14.
    Price HN, Schaffer JV. Congenital melanocytic nevi-when to worry and how to treat: facts and controversies. Clin Dermatol. 2010;28(3):293–302.CrossRefPubMedGoogle Scholar
  15. 15.
    Araujo C, Resende C, Pardal F, et al. Giant congenital melanocytic nevi and neurocutaneous melanosis. Case Rep Med. 2015;2015:545603.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Frieden IJ, Williams ML, Barkovich AJ. Giant congenital melanocytic nevi: brain magnetic resonance findings in neurologically asymptomatic children. J Am Acad Dermatol. 1994;31(3):423–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Rhodes AR, Wood WC, Sober AJ, Mihm Jr MC. Nonepidermal origin of malignant melanoma associated with a giant congenital nevocellular nevus. Plast Reconstr Surg. 1981;67(6):782–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Bittencourt FV, Marghoob AA, Kopf AW, et al. Large congenital melanocytic nevi and the risk for development of malignant melanoma and neurocutaneous melanocytosis. Pediatrics. 2000;106(4):736–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Eronen M, Siren M, Ekblad H, et al. Short- and long-term outcome of children with congenital complete heart block diagnosed in utero or as a newborn. Pediatrics. 2000;106(1):86–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Li YQ, Wang Q, Luo Y, et al. Neonatal lupus erythematosus: a review of 123 cases in China. Int J Rheum Dis. 2015;18(7):761–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Weston WL, Morelli JG, Lee LA. The clinical spectrum of anti-Ro-positive cutaneous neonatal lupus erythematosus. J Am Acad Dermatol. 1999;40(5 Pt 1):675–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Cimaz R, Spence DL, Hornberger L, Silverman ED. Incidence and spectrum of neonatal lupus erythematosus: a prospective study of infants born to mothers with anti-Ro autoantibodies. J Pediatr. 2003;142(6):678–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Hasbún T, Chamlin SL. A 6-week-old boy with annular skin lesions. Neonatal lupus erythematosus. Pediatr Ann. 2014;43(1):1–3.CrossRefGoogle Scholar
  24. 24.
    Poziomczyk CS, Recuero JK, Bringhenti L. Incontinentia pigmenti. An Bras Dermatol. 2014;89(1):26–36.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ehrenreich M, Tarlow MM, Godlewska-Janusz E, Schwartz RA. Incontinentia pigmenti (Bloch-Sulzberger syndrome): a systemic disorder. Cutis. 2007;79(5):355–62.PubMedGoogle Scholar
  26. 26.
    Yang Y, Guo Y, Ping Y, et al. Neonatal incontinentia pigmenti: six cases and a literature review. Exp Ther Med. 2014;8(6):1797–806.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Aradhya S, Woffendin H, Jakins T, et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet. 2001;10:2171–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PediatricsUCSF Benioff Children’s HospitalSan FranciscoUSA
  2. 2.Departments of Dermatology and PediatricsUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations