Skip to main content

All-Optical X-Ray and γ-Ray Sources from Ultraintense Laser-Matter Interactions

  • Chapter
  • First Online:
Book cover Laser-Driven Particle Acceleration Towards Radiobiology and Medicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

With the dramatic recent development of ultraintense lasers , a new perspective for compact, all-laser driven X-ray and γ-ray sources is emerging, aiming at a brightness currently achievable only with state of the art free electron lasers and Thomson scattering Sources based on large linear accelerators. In contrast with existing sources, all-optical sources exploit laser-plasma interaction to obtain the required high energy electrons to generate radiation. Bremsstrahlung or fluorescence emission driven from fast electron generation in laser interaction with solids was demonstrated to provide effective ultrashort X-ray emission with unique properties. More recently, laser-driven electron acceleration from interaction with gas-targets is being considered in place of conventional radio-frequency electron accelerators for a variety of radiation emission mechanisms. Broadband radiation generation schemes including betatron and Bremsstrahlung are being developed while free electron laser and Thomson scattering by collision with a synchronized laser pulse are being proposed for the generation of narrow band radiation. Here we present an overview of the current developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Stickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  2. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Faure, Y. Glinec, A. Pukhov et al., Lett. Nat. 431, 541 (2004)

    Article  Google Scholar 

  4. W.P. Leemans et al., Nat. Phys. 2, 696 (2006)

    Article  Google Scholar 

  5. D. Giulietti et al., Phys. Plasmas 9, 3655 (2002). (letter)

    Article  ADS  Google Scholar 

  6. W.P. Leemans et al., AIP Conf. Proc. 1299, 3 (2010)

    Article  ADS  Google Scholar 

  7. J.G. Gallacher et al., Phys. Plasmas 16, 093102 (2009)

    Article  ADS  Google Scholar 

  8. http://www.eupraxia-project.eu/home.html

  9. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  10. A. Rousse et al., Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Top. 50, 2200 (1994)

    Google Scholar 

  11. R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  12. M. Tabak et al., Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  13. S. Atzeni, J.M. ter Vehn, The Physics of Inertial Fusion (Oxford University Press, Great Clarendon Street, Oxford ***OX2 6DP, 2004)

    Google Scholar 

  14. A. Pukhov, J. ter Vehn, Appl. Phys. B 74, 355 (2002)

    Article  ADS  Google Scholar 

  15. S. Gordienko, A. Pukhov, Phys. Plasmas 12, 043109 (2005)

    Article  ADS  Google Scholar 

  16. B.B. Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)

    Article  ADS  Google Scholar 

  17. S.V. Bulanov, F. Pegoraro, A.M. Pukhov, A.S. Sakharov, Phys. Rev. Lett. 78, 4205 (1997)

    Article  ADS  Google Scholar 

  18. S. Bulanov, N. Naumova, F. Pegoraro, J. Sakai, Phys. Rev. E 58, 5257 (1995)

    Article  ADS  Google Scholar 

  19. P. Tomassini et al., Phys. Rev. ST Accel. Beams 6, 121301 (2003)

    Article  ADS  Google Scholar 

  20. A.J. Gonsalves et al., Nat. Phys. 7, 862 (2011)

    Article  Google Scholar 

  21. A. Buck et al., Phys. Rev. Lett. 110, 185006 (2013)

    Article  ADS  Google Scholar 

  22. D. Umstadter, J.K. Kim, E. Dodd, Phys. Rev. Lett. 76, 2073 (1996)

    Article  ADS  Google Scholar 

  23. E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)

    Article  ADS  Google Scholar 

  24. M. Chen, Z.-M. Sheng, Y.-Y. Ma, J. Zhang, J. Appl. Phys. 99 (2006)

    Google Scholar 

  25. S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  26. W.L. Kruer, K. Estabrook, Phys. Fluids 28, 430 (1985)

    Article  ADS  Google Scholar 

  27. F.N. Beg et al., Phys. Plasmas 4, 447 (1997)

    Article  ADS  Google Scholar 

  28. S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  29. M.G. Haines, M.S. Wei, F.N. Beg, R.B. Stephens, Phys. Rev. Lett. 102, 045008 (2009)

    Article  ADS  Google Scholar 

  30. B.S. Paradkar et al., Phys. Rev. E 83, 046401 (2011)

    Article  ADS  Google Scholar 

  31. J. May et al., Phys. Rev. E 84, 025401 (2011)

    Article  ADS  Google Scholar 

  32. W. Theobald et al., Phys. Plasmas 18, 056305 (2011)

    Article  ADS  Google Scholar 

  33. F. Ewald, H. Schwoerer, R. Sauerbrey, Europhys. Lett. 60, 710 (2002)

    Article  ADS  Google Scholar 

  34. G. Cristoforetti et al., Phys. Rev. E 87, 023103 (2013)

    Article  ADS  Google Scholar 

  35. L.A. Gizzi et al., Plasma Phys. Control. Fusion 49, B221 (2007)

    Article  ADS  Google Scholar 

  36. G. Cristoforetti et al., Plasma Phys. Control. Fusion 56, 095001 (2014)

    Article  ADS  Google Scholar 

  37. T. Ceccotti et al., Phys. Rev. Lett. 111, 185001 (2013)

    Article  ADS  Google Scholar 

  38. M.A. Purvis et al., Nat. Photonics 7, 796 (2013)

    Google Scholar 

  39. L. Yi, A. Pukhov, P.L. Thanh, B. Shen 1, 1 (2015)

    Google Scholar 

  40. L.A. Gizzi et al., Phys. Rev. Lett. 76, 2278 (1996)

    Article  ADS  Google Scholar 

  41. L.A. Gizzi et al., Laser Part. Beams 19, 181 (2001)

    Article  ADS  Google Scholar 

  42. D. Giulietti et al., Phys. Rev. E 64, 015402(R) (2001)

    Article  ADS  Google Scholar 

  43. A. Giulietti et al., Phys. Rev. Lett. 101, 105002 (2008)

    Article  ADS  Google Scholar 

  44. G. Sarri et al., Phys. Rev. Lett. 113, 224801 (2014)

    Article  ADS  Google Scholar 

  45. A. Ben-Ismal, J. Faure, V. Malka, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrom. Detect. Assoc. Equip. 629, 382 (2011)

    Article  ADS  Google Scholar 

  46. A. Ben-Ismal et al., Appl. Phys. Lett. 98, 264101 (2011)

    Article  ADS  Google Scholar 

  47. S. Corde et al., Rev. Mod. Phys. 85, 1 (2013)

    Article  ADS  Google Scholar 

  48. J. Wenz et al., Nat. Commun. 6, 7568 (2015)

    Article  ADS  Google Scholar 

  49. S. Kneip et al., Appl. Phys. Lett. 99, 093701 (2011)

    Article  ADS  Google Scholar 

  50. Z. Najmudin et al., Philos. Trans. A. Math. Phys. Eng. Sci. 372, 20130032 (2014)

    Article  ADS  Google Scholar 

  51. S. Cipiccia et al., Nat. Phys. 7, 867 (2011)

    Article  Google Scholar 

  52. W. Walsh et al., in Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE (IEEE, Orlando, FL, 2009), pp. 80–85

    Google Scholar 

  53. C.T.Angell et al., Phys. Rev. C 90, 054315 (2014)

    Google Scholar 

  54. F. Albert et al., Phys. Rev. ST Accel. Beams 13, 070704 (2010)

    Article  ADS  Google Scholar 

  55. A.M. Sandorfi et al., IEEE Trans. Nucl. Sci. 30, 3083 (1983)

    Article  ADS  Google Scholar 

  56. H. Schwoerer et al., Phys. Rev. Lett. 96, 014802 (2006)

    Article  ADS  Google Scholar 

  57. W. Leemans et al., Phys. Rev. Lett. 113, 245002 (2014)

    Article  ADS  Google Scholar 

  58. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998)

    MATH  Google Scholar 

  59. L.A. Gizzi et al., IEEE Trans. Plasma Sci. 39, 2954 (2011)

    Article  ADS  Google Scholar 

  60. S.H. Glenzer et al., Phys. Plasmas 6, 2117 (1999)

    Article  ADS  Google Scholar 

  61. P. Tomassini, A. Giulietti, D. Giulietti, L.A. Gizzi, Appl. Phys. B 80, 419 (2005)

    Article  ADS  Google Scholar 

  62. S.K. Ride, E. Esarey, M. Baine, Phys. Rev. E 52, 5425 (1995)

    Article  ADS  Google Scholar 

  63. E. Esarey, S.K. Ride, P. Sprangle, Phys. Rev. E 48, 3003 (1993)

    Article  ADS  Google Scholar 

  64. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, London, 2013)

    Book  Google Scholar 

  65. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Elsevier, Oxford, 1975)

    MATH  Google Scholar 

  66. A. Di Piazza, K. Hatsagortsyan, C. Keitel, Phys. Rev. Lett. 102, 254802 (2009)

    Article  ADS  Google Scholar 

  67. R.H. Milburn, Phys. Rev. Lett. 10, 75 (1963)

    Article  ADS  Google Scholar 

  68. C. Bemporad, R.H. Milburn, N. Tanaka, M. Fotino, Phys. Rev. 138, B1546 (1965)

    Article  ADS  Google Scholar 

  69. W.P. Leemans, Phys. Rev. Lett. 67, 1434 (1991)

    Article  ADS  Google Scholar 

  70. P. Tomassini et al., Phys. Rev. Spec. Top. Accel. Beams 6, 121301 (2003)

    Article  ADS  Google Scholar 

  71. L. Labate et al., Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrom. Detect. Assoc. Equip. 495, 148 (2002)

    Article  ADS  Google Scholar 

  72. S. Chen et al., Phys. Rev. Lett. 155003, 1 (2013)

    Google Scholar 

  73. C. Liu et al., Opt. Lett. 39, 4132 (2014)

    Article  ADS  Google Scholar 

  74. N.D. Powers et al., Nat. Photonics 8, 28 (2013)

    Article  ADS  Google Scholar 

  75. K. Khrennikov et al., Phys. Rev. Lett. 114, 1 (2015)

    Article  Google Scholar 

  76. D.J. Corvan, G. Sarri, M. Zepf, Rev. Sci. Instrum. 85, 1 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonida A. Gizzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gizzi, L.A. (2016). All-Optical X-Ray and γ-Ray Sources from Ultraintense Laser-Matter Interactions. In: Giulietti, A. (eds) Laser-Driven Particle Acceleration Towards Radiobiology and Medicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31563-8_8

Download citation

Publish with us

Policies and ethics