Skip to main content

Generation of Multi-GeV Electron Beams and Bio-medical Applications

  • Chapter
  • First Online:
Laser-Driven Particle Acceleration Towards Radiobiology and Medicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 973 Accesses

Abstract

Laser-driven high-energy electrons are becoming unique and important sources in various research disciplines including radiobiology and medicine as well as basic science and nuclear engineering. The primitive idea on the laser-field-assisted electron acceleration was proposed by Tajima and Dawson in 1979, and since then tremendous progress has been made to realize multi-GeV electron beams through the laser-matter interaction. Despite the marvelous success in the laser-driven high-energy electron generation, considerable improvements in terms of physical parameters such as maximum energy, stability, mono-energeticity, charge, and so on are still requested for practical engineering applications. In this chapter, the basic principle and parameters for building a laser-driven electron accelerator is briefly described and the outstanding experimental achievements carried out in the laser-driven electron acceleration are summarized in following sections. Finally, the bio-medical applications of laser-driven high-energy electron beams are introduced before concluding the chapter. The unique high-energy electron beams driven by ultrashort high-power laser pulses will be a promising source for a next-generation, compact, low-cost, high-resolution imaging machine for bio-medical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  2. S. Laux, F. Lureau, C. Radier, O. Chalus, F. Caradec, O. Casagrande, E. Pourtal, C. Simon-Boisson, F. Soyer, P. Lebarny, Suppression of parasitic lasing in high energy, high repetition rate Ti: sapphire laser amplifiers. Opt. Lett. 37, 1913 (2012)

    Article  ADS  Google Scholar 

  3. T.J. Yu, S.K. Lee, J.H. Sung, J.W. Yoon, T.M. Jeong, J. Lee, Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti: sapphire laser. Opt. Express 20, 10807 (2012)

    Article  ADS  Google Scholar 

  4. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 4428 (1979)

    Article  Google Scholar 

  5. J.D. Lawson, Lasers and accelerators. IEEE Trans. Nucl. Sci. NS-26, 4217 (1979).

    Google Scholar 

  6. Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K.A. Tanaka, H. Takabe, S. Nakai, Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 48 (1992)

    Article  ADS  Google Scholar 

  7. F. Amiranoff, D. Bernard, B. Cros, F. Jacquet, G. Matthieussent, P. Miné, P. Mora, J. Morillo, F. Moulin, A.E. Specka, C. Stenz, Electron acceleration in Nd-laser plasma beat-wave experiments. Phys. Rev. Lett. 74, 5220 (1995)

    Article  ADS  Google Scholar 

  8. K. Nakajima, D. Fisher, T. Kawakubo, H. Nakanishi, A. Ogata, Y. Kato, Y. Kitagawa, R. Kodama, K. Mima, H. Shiraga, K. Suzuki, K. Yamakawa, T. Zhang, Y. Sakawa, T. Shoji, Y. Nishida, N. Yugami, M. Downer, T. Tajima, Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74, 4428 (1995)

    Article  ADS  Google Scholar 

  9. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  10. C.G.R. Geddes, C. van Toth, J. Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  11. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  12. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Toth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator. Naure Phys. 2, 696 (2006)

    ADS  Google Scholar 

  13. W.P. Leemans, A.J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C.B. Schroeder, C. Tóth, J. Daniels, D.E. Mittelberger, S.S. Bulanov, J.-L. Vay, C.G.R. Geddes, E. Esarey, Multi-GeV electron beams from capillary-discharge-guided sub petawatt Laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014)

    Article  ADS  Google Scholar 

  14. N.H. Matlis, S. Reed, S.S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, M.C. Downer, Snapshots of laser wakefields. Nature phys. 2, 749 (2006)

    Article  ADS  Google Scholar 

  15. A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, Electron acceleration from the breaking of relativistic plasma waves. Nature 337, 606 (1995)

    Google Scholar 

  16. A. Pukhov, J. Meyer-ter-Vehn, Laser wakefield acceleration: the highly non-linear broken-waveregime. Appl. Phys. B 74, 355 (2002)

    Article  ADS  Google Scholar 

  17. W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas, Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006)

    Article  ADS  Google Scholar 

  18. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  19. M. Geissler, J. Schreiber, J. Meyer-ter-Vehn, Bubble acceleration of electrons with few-cycle laser pulses. New J. Phys. 8, 186 (2006)

    Article  ADS  Google Scholar 

  20. N.A.M. Hafz, T.M. Jeong, I.W. Choi, S.K. Lee, K.H. Pae, V.V. Kulagin, J.H. Sung, T.J. Yu, K.-H. Hong, T. Hosokai, J.R. Cary, D.-K. Ko, J. Lee, Stable generation of GeV-class electron beams from self-guided laser—plasma channels. Nature Photon. 2, 571 (2008)

    Article  Google Scholar 

  21. J. Osterhoff, A. Popp, Z. Major, B. Marx, T.P. Rowlands-Rees, M. Fuchs, M. Geissler, R. Horlein, B. Hidding, S. Becker, E.A. Peralta, U. Schramm, F. Gruner, D. Habs, F. Krausz, S.M. Hooker, S. Karsch, Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. Phys. Rev. Lett. 101, 085002 (2008)

    Article  ADS  Google Scholar 

  22. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S.A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pail, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A.C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, M.C. Downer, Quasi-monoenergetic laser-plasma acceleration of electrons to 2GeV. Nature Commun. 4, 1988 (2013)

    ADS  Google Scholar 

  23. W. Leemans, E. Esarey, Laser-driven plasma-wave electron accelerators. Phys. Today 62, 44 (2009)

    Article  Google Scholar 

  24. K. Nakamura, B. Nagler, C. Tóth, C.G.R. Geddes, C.B. Schroeder, E. Esarey, W.P. Leemans, A.J. Gonsalves, S.M. Hooker, GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator. Phys. Plasmas 14, 056708 (2007)

    Article  ADS  Google Scholar 

  25. N.A.M. Hafz, T.M. Jeong, S.K. Lee, I.W. Choi, K.H. Pae, V.V. Kulagin, J.H. Sung, T.J. Yu, J.R. Cary, D.-K. Ko, J. Lee, Laser acceleration of electron beams to the GeV-class energies in gas jets. J. Opt. Soc. Kor. 13, 8 (2009)

    Article  Google Scholar 

  26. S.F. Martins, R.A. Fonseca, W. Lu, W.B. Mori, L.O. Silva, Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nature Phys. 6, 311 (2010)

    Article  ADS  Google Scholar 

  27. J.S. Liu, C.Q. Xia, W.T. Wang, H.Y. Lu, C. Wang, A.H. Deng, W.T. Li, H. Zhang, X.Y. Liang, Y.X. Leng, X.M. Lu, C. Wang, J.Z. Wang, K. Nakajima, R.X. Li, Z.Z. Xu, All-optical cascaded laser wakefield accelerator using ionization-induced injection. Phys. Rev. Lett. 107, 035001 (2011)

    Article  ADS  Google Scholar 

  28. H.T. Kim, K.H. Pae, H.J. Cha, I.J. Kim, T.J. Yu, J.H. Sung, S.K. Lee, T.M. Jeong, J. Lee, Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. Phys. Rev. Lett. 111, 165002 (2013)

    Article  ADS  Google Scholar 

  29. K.R. Hogstrom, P.R. Almond, Review of electron beam therapy physics. Phys. Med. Biol. 51, R455 (2006)

    Article  ADS  Google Scholar 

  30. K.K. Kainz, K.R. Hogstrom, J.A. Antolak, P.R. Almond, C.D. Bloch, C. Chiu, M. Fomytskyi, F. Raischel, M. Downer, T. Tajima, Dose properties of a laser accelerated electron beam and prospects for clinical application. Med. Phys. 31, 2053 (2004)

    Article  Google Scholar 

  31. A. Subiel, V. Moskvin, G.H. Welsh, S. Cipiccia, D. Reboredo, P. Evans, M. Partridge, C. DesRosiers, M.P. Anania, A. Cianchi, A. Mostacci, E. Chiadroni, D. Di Giovenale, F. Villa, R. Pompili, M. Ferrario, M. Belleveglia, G. Di Pirro, G. Gatti, C. Vaccarezza, B. Seitz, R.C. Isaac, E. Brunetti, S.M. Wiggins, B. Ersfeld, M.R. Islam, M.S. Mendonca, A. Sorensen, M. Boyd, D.A. Jaroszynski, Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations. Phys. Med. Biol. 59, 5811 (2014)

    Article  Google Scholar 

  32. G.C. Bussolino, A. Faenov, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, T. Pikuz, L.A. Gizzi, Electron radiography using a table-top laser-cluster plasma accelerator. J. Phys. D Appl. Phys. 46, 245501 (2013)

    Article  ADS  Google Scholar 

  33. M. Fuchs, R. Weingartner, A. Popp, Z. Major, S. Becker, J. Osterhoff, I. Cortrie, B. Zeitler, R. Hörlein, G.D. Tsakiris, U. Schramm, T.P. Rowlands-Rees, S.M. Hooker, D. Habs, F. Krausz, S. Karsch, F. Grüner, Laser-driven soft-X-ray undulator source. Nature Phys. 5, 826 (2009)

    Article  ADS  Google Scholar 

  34. A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, D. Hulin, Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005 (2004)

    Article  ADS  Google Scholar 

  35. S. Kneip, S.R. Nagel, C. Bellei, N. Bourgeois, A.E. Dangor, A. Gopal, R. Heathcote, S.P.D. Mangles, J.R. Marques, A. Maksimchuk, P.M. Nilson, K.T. Phuoc, S. Reed, M. Tzoufras, F.S. Tsung, L. Willingale, W.B. Mori, A. Rousse, K. Krushelnick, Z. Najmudin, Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100, 105006 (2008)

    Article  ADS  Google Scholar 

  36. N.D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen, S. Banerjee, J. Zhang, D.P. Umstadter, Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source. Nature Photon. 8, 28 (2014)

    Article  ADS  Google Scholar 

  37. F. Albert, A.G.R. Thomas, S.P.D. Mangles, S. Banerjee, S. Corde, A. Flacco, M. Litos, D. Neely, J. Vieira, Z. Najmudin, R. Bingham, C. Joshi, T. Katsouleas, Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Phys. Control. Fusion 56, 084015 (2014)

    Article  ADS  Google Scholar 

  38. H.T. Kim, I.J. Kim, C.M. Kim, T.M. Jeong, T.J. Yu, S.K. Lee, J.H. Sung, J.W. Yoon, H. Yun, S.C. Jeon, I.W. Choi, J. Lee, Single-shot nanometer-scale holographic imaging with laser-driven x-ray laser. Appl. Phys. Lett. 98, 121105 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongmin Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jeong, T.M., Lee, J. (2016). Generation of Multi-GeV Electron Beams and Bio-medical Applications. In: Giulietti, A. (eds) Laser-Driven Particle Acceleration Towards Radiobiology and Medicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31563-8_6

Download citation

Publish with us

Policies and ethics