Skip to main content

Radiation Therapy Towards Laser-Driven Particle Beams: An “OMICS” Approach in Radiobiology

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The main goal of radiation therapy (RT) treatments is to achieve local tumor control, to selectively kill cancer cells without causing significant damage to the surrounding normal tissues. RT uses ionizing radiation (IR) generated with conventional accelerators, such as X-rays, γ-rays, electrons, protons and ions. It is now well recognized by the entire scientific community that to evaluate the biological effects of IR it is essential an “OMIC” approach to take into account both the different cell types involved and the different IR’s used. The latest advances on cell and molecular response to IR, the most relevant data emerging from recent studies (genomics, epigenetics, proteomics and immunology) about different cell types, will be reported. We will discuss mainly biological effects of IR generated by conventional accelerators but we will also consider the few and preliminary radiobiological studies performed so far with laser-driven electron and proton beams. This will allow us in particular to speculate on cell and molecular effects of the laser-driven electron beams, a topic that can be now carefully investigated thanks to the impressive progress of “table-top” laser-driven accelerators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Bernier, E.J. Hall, A. Giaccia, Radiation oncology: a century of achievements. Nat. Rev. Cancer 4, 737–747 (2004)

    Article  Google Scholar 

  2. E.J. Hall, A.J. Giaccia, Radiobiology for the Radiologist. 6th edn. (Lippincott Williams & Wilkins, Philadelphia, 2006), pp. 16–180

    Google Scholar 

  3. G. Schettino, S.T. Al Rashid, K.M. Prise, Radiation microbeams as spatial and temporal probes of subcellular and tissue response. Mutat. Res. 704(1–3), 68–77 (2010)

    Article  Google Scholar 

  4. G. Kraft, M. Scholz, U. Bechthold, Tumor therapy and track structure. Radiat. Environ. Biophys. 38(4), 229–237 (1999)

    Article  Google Scholar 

  5. U. Linz, J. Alonso, What will it take for laser driven proton accelerators to be applied to tumor therapy? Phys. Rev. St. Accel. Beams 10, 1–8 (2007)

    Article  Google Scholar 

  6. A. Giulietti et al., Intense gamma-ray source in the Giant Dipole Resonance range driven by 10-TW laser pulses. Phys. Rev. Lett. 101, 105002 (2008)

    Article  ADS  Google Scholar 

  7. A. Giulietti, M.G. Andreassi, C. Greco, Pulsed radiobiology with laser-driven plasma accelerators, in SPIE Proceedings, vol. 8079, 80791J (2011)

    Google Scholar 

  8. O. Zlobinskaya, C. Siebenwirth, C. Greubel, V. Hable, R. Hertenberger, N. Humble, S. Reinhardt, D. Michalski, B. Röper, G. Multhoff, G. Dollinger, J.J. Wilkens, T.E. Schmid, The effects of ultra-high dose rate proton irradiation on growth delay in the treatment of human tumor xenografts in nude mice. Radiat. Res. 181(2), 177–183 (2014)

    Article  Google Scholar 

  9. D. Doria, K.F. Kakolee, S. Kar et al., Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Adv. 2, 011209 (2012)

    Article  ADS  Google Scholar 

  10. A. Yogo, K. Satoa, M. Nishikinoa, M. Moria, Radiobiological study by using laser-driven proton beams, in AIP Conference Proceedings, vol. 1153 (2009), p. 438

    Google Scholar 

  11. D. Doria, K.F. Kakolee, S. Kar, K.S. Litt, Biological cell irradiation at ultrahigh dose rate employing laser driven protons, in AIP Conference Proceedings, vol. 1462 (2012), p. 135

    Google Scholar 

  12. J. Bin, K. Allinger, W. Assmann, G. Dollinger, G.A. Drexler et al., A laser-driven nanosecond proton source for radiobiological studies. Appl. Phys. Lett. 101, 243701 (2012)

    Article  ADS  Google Scholar 

  13. L. Laschinsky, M. Baumann, E. Beyreuther, W. Enghardt, M. Kaluza, L. Karsch, E. Lessmann, D. Naumburger, M. Nicolai, C. Richter, R. Sauerbrey, H.P. Schlenvoigt, J. Pawelke, Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator. J. Radiat. Res. 53(3), 395–403 (2012)

    Article  Google Scholar 

  14. A.J. Giaccia, Molecular radiobiology: the state of the art. J. Clin. Oncol. 32(26), 2871–2878 (2014)

    Article  Google Scholar 

  15. L. Minafra, V. Bravatà, Cell and molecular response to IORT treatment. Transl. Cancer Res. 3, 32–47 (2014)

    Google Scholar 

  16. S.P. Jackson, J. Bartek, The DNA-damage response in human biology and disease. Nature 461(7267), 1071–1078 (2009)

    Article  ADS  Google Scholar 

  17. C.M. West, G.C. Barnett, Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med. 3, 52 (2011)

    Article  Google Scholar 

  18. S. Renuse, R. Chaerkady, A. Pandey, Proteogenomics. Proteomics 11(4), 620–630 (2011)

    Article  Google Scholar 

  19. S. Faulkner, M.D. Dun, H. Hondermarck, Proteogenomics: emergence and promise. Cell. Mol. Life Sci. 72, 953–957 (2015)

    Article  Google Scholar 

  20. V. Bravatà, F.P. Cammarata, G.I. Forte, L. Minafra, “OMICS” of HER2-positive breast cancer. OMICS 17(3), 119–129 (2013)

    Article  Google Scholar 

  21. J.D. Jaffe, H.C. Berg, G.M. Church, Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4, 59–77 (2004)

    Article  Google Scholar 

  22. A.I. Nesvizhskii, Proteogenomics: concepts, applications and computational strategies. Nat. Methods 11(11), 1114–1125 (2014)

    Article  Google Scholar 

  23. P. Tamulevicius, M. Wang, G. Iliakis, Homology-directed repair is required for the development of radioresistance during S phase: interplay between double-strand break repair and checkpoint response. Radiat. Res. 167, 1–11 (2007)

    Article  Google Scholar 

  24. A.M. Güerci, F.N. Dulout, C.A. Grillo et al., Differential response of two cell lines sequentially irradiated with low X-ray doses. Int. J. Radiat. Biol. 81, 367–372 (2005)

    Article  Google Scholar 

  25. M. Ghardi, M. Moreels, B. Chatelain et al., Radiation induced double strand breaks and subsequent apoptotic DNA fragmentation in human peripheral blood mononuclear cells. Int. J. Mol. Med. 29, 769–780 (2012)

    Google Scholar 

  26. E. Mladenov, S. Magin, A. Soni et al., DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front. Oncol. 3, 113 (2013)

    Article  Google Scholar 

  27. B.J. Moeller, R.A. Richardson, M.W. Dewhirst, Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 26, 241–248 (2007)

    Article  Google Scholar 

  28. A. Kakarougkas, P. Jeggo, DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol. 87(1035), 20130685 (2014)

    Article  Google Scholar 

  29. K. Rothkamm, M. Löbrich, Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl. Acad. Sci. USA 100, 5057–5062 (2003)

    Article  ADS  Google Scholar 

  30. L.M. Martin, B. Marples, M. Coffey et al., DNA mismatch repair and the DNA damage response to ionizing: making sense of apparently conflicting data. Cancer Treat. Rev. 36, 518–527 (2010)

    Article  Google Scholar 

  31. C. Escribano-Díaz, A. Orthwein, A. Fradet-Turcotte et al., A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49, 872–883 (2013)

    Article  Google Scholar 

  32. J.H. Lee, T.T. Paull, Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741–7748 (2007)

    Article  Google Scholar 

  33. I.G. Cowell, N.J. Sunter, P.B. Singh et al., gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2(10), e1057 (2007)

    Article  ADS  Google Scholar 

  34. J. Pflaum, S. Schlosser, M. Müller, p53 Family and cellular stress responses in cancer. Front. Oncol. 4, 285 (2014)

    Article  Google Scholar 

  35. V. Bravatà, L. Minafra, G. Russo, G.I. Forte, F.P. Cammarata, M. Ripamonti, C. Casarino, G. Augello, F. Costantini, G. Barbieri, C. Messa, M.C. Gilardi, High dose ionizing radiation regulates gene expression changes in MCF7 breast cancer cell line. Anticancer Res. 35, 5 (2015)

    Google Scholar 

  36. L. Minafra, V. Bravatà, G. Russo, G.I. Forte, F.P. Cammarata, M. Ripamonti, G. Candiano, M. Cervello, A. Giallongo, G. Perconti, C. Messa, M.C. Gilardi, Gene expression profiling of MCF10A breast epithelial cells exposed to IOERT. Anticancer Res. 35, 6 (2015)

    Google Scholar 

  37. S.D. Kraft, C. Richter, K. Zeil et al., Dose-dependent biological damage of tumor cells by laser-accelerated proton beams. New J. Phys. 12, 085003 (2010)

    Article  ADS  Google Scholar 

  38. R.A. Panganiban, A.L. Snow, R.M. Day, Mechanisms of radiation toxicity in transformed and non-transformed cells. Int. J. Mol. Sci. 14, 15931–15958 (2013)

    Article  Google Scholar 

  39. N.A.P. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006)

    Article  Google Scholar 

  40. O. Surova, B. Zhivotovsky, Various modes of cell death induced by DNA damage. Oncogene 32(33), 3789–3797 (2013)

    Article  Google Scholar 

  41. D. Eriksson, T. Stigbrand, Radiation-induced cell death mechanisms. Tumor Biol. 31(4), 363–372 (2010)

    Article  Google Scholar 

  42. R.D. Stewart, V.K. Yu, A.G. Georgakilas, C. Koumenis, J.H. Park, D.J. Carlson, Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat. Res. 176(5), 587–602 (2011)

    Article  Google Scholar 

  43. E.B. Golden, I. Pellicciotta, S. Demaria, M.H. Barcellos-Hoff, S.C. Formenti, The convergence of radiation and immunogenic cell death signalling pathways. Front. Oncol. 7(2), 88 (2012)

    Google Scholar 

  44. Y. Fuchs, H. Steller, Programmed cell death in animal development and disease. Cell 147(4), 742–758 (2011)

    Article  Google Scholar 

  45. K. Kuribayashi, N. Finnberg, J.R. Jeffers, G.P. Zambetti, W.S. El-Deiry, The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo. Cell Cycle 10(14), 2380–2389 (2011)

    Article  Google Scholar 

  46. A.R. Cuddihy, R.G. Bristow, The p53 protein family and radiation sensitivity: yes or no? Cancer Metastasis Rev. 23, 237–257 (2004)

    Article  Google Scholar 

  47. D.J. Grdina, J.S. Murley, R.C. Miller, H.J. Mauceri, H.G. Sutton, J.J. Li, G.E. Woloschak, R.R. Weichselbaum, A survivin-associated adaptive response in radiation therapy. Cancer Res. 73(14), 4418–4428 (2013)

    Article  Google Scholar 

  48. R.A. Panganiban, O. Mungunsukh, R.M. Day, X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells. Int. J. Radiat. Biol. 89(8), 656–667 (2013)

    Article  Google Scholar 

  49. R.S. Hotchkiss, A. Strasser, J.E. McDunn, P.E. Swanson, Cell death. N. Engl. J. Med. 361(16), 1570–1583 (2009)

    Article  Google Scholar 

  50. L. Galluzzi, G. Kroemer, Necroptosis: a specialized pathway of programmed necrosis. Cell 135(7), 1161–1163 (2008)

    Article  Google Scholar 

  51. M.A. Nehs, C.I. Lin, D.E. Kozono, E.E. Whang, N.L. Cho, K. Zhu, J. Moalem, F.D. Moore Jr, D.T. Ruan, Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery 150(6), 1032–1039 (2011)

    Article  Google Scholar 

  52. F. Rodier, J. Campisi, Four faces of cellular senescence. J. Cell Biol. 192(4), 547–556 (2011)

    Article  Google Scholar 

  53. J. Campisi, Aging, cellular senescence and cancer. Annu. Rev. Physiol. 75, 685–705 (2013)

    Article  Google Scholar 

  54. T. Tchkonia, Y. Zhu, J. van Deursen, J. Campisi, J.L. Kirkland, Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin. Invest. 123(3), 966–972 (2013)

    Article  Google Scholar 

  55. M. Xiao, C.E. Inal, V.I. Parekh, C.M. Chang, M.H. Whitnall, 5-Androstenediol promotes survival of gamma-irradiated human hematopoietic progenitors through induction of nuclear factor-kappaB activation and granulocyte colony-stimulating factor expression. Mol. Pharmacol. 72(2), 370–379 (2007)

    Article  Google Scholar 

  56. M.S. Mendonca, H. Chin-Sinex, R. Dhaemers, L.E. Mead, M.C. Yoder, D.A. Ingram, Differential mechanisms of x-ray-induced cell death in human endothelial progenitor cells isolated from cord blood and adults. Radiat. Res. 176(2), 208–216 (2011)

    Article  Google Scholar 

  57. K.J. Lindsay, P.J. Coates, S.A. Lorimore, E.G. Wright, The genetic basis of tissue responses to ionizing radiation. Br. J. Radiol. 80(Spec No 1), S2–S6 (2007)

    Article  Google Scholar 

  58. M. Dodson, V. Darley-Usmar, J. Zhang, Cellular metabolic and autophagic pathways: traffic control by redox signalling. Free Radic. Biol. Med. 63, 207–221 (2013)

    Article  Google Scholar 

  59. D. Denton, S. Nicolson, S. Kumar, Cell death by autophagy: facts and apparent artefacts. Cell Death Differ. 19(1), 87–95 (2012)

    Article  Google Scholar 

  60. W.K. Wu, S.B. Coffelt, C.H. Cho, X.J. Wang, C.W. Lee, F.K. Chan, J. Yu, J.J. Sung, The autophagic paradox in cancer therapy. Oncogene 31(8), 939–953 (2012)

    Article  Google Scholar 

  61. H. Rodriguez-Rocha, A. Garcia-Garcia, M.I. Panayiotidis, R. Franco, DNA damage and autophagy. Mutat. Res. 711(1–2), 158–166 (2011)

    Article  Google Scholar 

  62. S. Palumbo, S. Comincini, Autophagy and ionizing radiation in tumors: the “survive or not survive” dilemma. J. Cell. Physiol. 228(1), 1–8 (2013)

    Article  Google Scholar 

  63. W. Zhuang, Z. Qin, Z. Liang, The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim. Biophys. Sin. (Shanghai) 41(5), 341–351 (2009)

    Article  Google Scholar 

  64. S.H. Chang, A. Minai-Tehrani, J.Y. Shin, S. Park, J.E. Kim, K.N. Yu, S.H. Hong, C.M. Hong, K.H. Lee, G.R. Beck Jr, M.H. Cho, Beclin1-induced autophagy abrogates radioresistance of lung cancer cells by suppressing osteopontin. J. Radiat. Res. 53(3), 422–432 (2012)

    Google Scholar 

  65. H. Chaachouay, P. Ohneseit, M. Toulany, R. Kehlbach, G. Multhoff, H.P. Rodemann, Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother. Oncol. 99(3), 287–292 (2011)

    Article  Google Scholar 

  66. Y. Kuwahara, T. Oikawa, Y. Ochiai, M.H. Roudkenar, M. Fukumoto, T. Shimura, Y. Ohtake, Y. Ohkubo, S. Mori, Y. Uchiyama, M. Fukumoto, Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death Dis. 2, e177 (2011)

    Article  Google Scholar 

  67. D.A. Gewirtz, Autophagy and senescence in cancer therapy. J. Cell. Physiol. 229(1), 6–9 (2014)

    Google Scholar 

  68. S. Mansilla, W. Priebe, J. Portugal, Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 5(1), 53–60 (2006)

    Article  Google Scholar 

  69. I. Vitale, L. Galluzzi, M. Castedo, G. Kroemer, Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12(6), 385–392 (2011)

    Article  Google Scholar 

  70. M.A. Surani, K. Hayashi, P. Hajkova, Genetic and epigenetic regulators of pluripotency. Cell 128(4), 747–762 (2007)

    Article  Google Scholar 

  71. T. Kouzarides, Chromatin modifications and their function. Cell 128(4), 693–705 (2007)

    Article  Google Scholar 

  72. P.A. Jones, S.B. Baylin, The epigenomics of cancer. Cell 128(4), 683–692 (2007)

    Article  Google Scholar 

  73. Y. Ilnytskyy, O. Kovalchuk, Non-targeted radiation effects—an epigenetic connection. Mutat. Res. 714, 113–125 (2011)

    Article  Google Scholar 

  74. I. Pogribny, J. Raiche, M. Slovack, O. Kovalchuk, Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem. Biophys. Res. Commun. 320(4), 1253–1261 (2004)

    Article  Google Scholar 

  75. D.A. Antwih, K.M. Gabbara, W.D. Lancaster, D.M. Ruden, S.P. Zielske, Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics 8, 839–848 (2013)

    Article  Google Scholar 

  76. C. Kuhmann, D. Weichenhan, M. Rehli, C. Plass, P. Schmezer, O. Popanda, DNA methylation changes in cells regrowing after fractioned ionizing radiation. Radiother. Oncol. 101(1), 116–121 (2011)

    Article  Google Scholar 

  77. M.A. Chaudhry, R.A. Omaruddin, Differential DNA methylation alterations in radiation sensitive and -resistant cells. DNA Cell Biol. 31(6), 908–916 (2012)

    Article  Google Scholar 

  78. W.F. Morgan, M.B. Sowa, Effects of ionizing radiation in non irradiated cells. Proc. Natl. Acad. Sci. USA 102, 14127–14128 (2005)

    Article  ADS  Google Scholar 

  79. W.F. Morgan, M.B. Sowa, Non-targeted bystander effects induced by ionizing radiation. Mutat. Res. 616, 159–164 (2007)

    Article  Google Scholar 

  80. K.K. Jella, A. Garcia, B. McClean, H.J. Byrne, F.M. Lyng, Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells. Int. J. Radiat. Biol. 89, 182–190 (2012)

    Article  Google Scholar 

  81. A. Luce, A. Courtin, C. Levalois, S. Altmeyer-Morel, P.H. Romeo, S. Chevillard, J. Lebeau, Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis 30(3), 432–439 (2009)

    Article  Google Scholar 

  82. O. Kovalchuk, J.E. Baulch, Epigenetic changes and nontargeted radiation effects—is there a link? Environ. Mol. Mutagen. 49, 16–25 (2008)

    Article  Google Scholar 

  83. J.B. Little, Cellular radiation effects and the bystander response. Mutat. Res. 597(1–2), 113–118 (2006)

    Article  Google Scholar 

  84. W. Han, S. Chen, K.N. Yu, L. Wu, Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after alpha-particle irradiation. Mutat. Res. 684, 81–89 (2010)

    Article  Google Scholar 

  85. O.A. Sedelnikova, A. Nakamura, O. Kovalchuk, I. Koturbash, S.A. Mitchell, S.A. Marino, D.J. Brenner, W.M. Bonner, DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res. 67, 4295–4302 (2007)

    Article  Google Scholar 

  86. R. Baskar, A.S. Balajee, C.R. Geard, Effects of low and high let radiations on bystander human lung fibroblast cell survival. Int. J. Radiat. Biol. 83, 551–559 (2007)

    Article  Google Scholar 

  87. J.G. Kim, M.T. Park, K. Heo, K.M. Yang, J.M. Yi, Epigenetics meets radiation biology as a new approach in cancer treatment. Int. J. Mol. Sci. 14(7), 15059–15073 (2013)

    Article  Google Scholar 

  88. L. Chin, J.W. Gray, Translating insights from the cancer genome into clinical practice. Nature 452(7187), 553–563 (2008)

    Article  ADS  Google Scholar 

  89. J.A. Sparano, H. Ostrer, P.A. Kenny, Translating genomic research into clinical practice: promise and pitfalls. Am. Soc. Clin. Oncol. Educ. Book, 15–23 (2013)

    Google Scholar 

  90. F.M. Di Maggio, L. Minafra, G.I. Forte et al., Portrait of inflammatory response to ionizing radiation treatment. J. Inflamm. (Lond.) 12, 14 (2015)

    Article  Google Scholar 

  91. P. Dent, A. Yacoub, P.B. Fisher et al., MAPK pathways in radiation responses. Oncogene 22, 5885–5896 (2003)

    Article  Google Scholar 

  92. W.H. McBride, K.S. Iwamoto, R. Syljuasen et al., The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 22, 5755–5773 (2003)

    Article  Google Scholar 

  93. Q. Gu, Y. He, J. Ji et al., Hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) mediates radiation-induced invasiveness through the SDF-1α/CXCR4 pathway in non-small cell lung carcinoma cells. Oncotarget 6(13), 10893–10907 (2015)

    Article  Google Scholar 

  94. P. Dent, A. Yacoub, J. Contessa, R. Caron, G. Amorino, K. Valerie et al., Stress and radiation-induced activation of multiple intracellular signalling pathways. Radiat. Res. 159, 283–300 (2003)

    Article  Google Scholar 

  95. T. Criswell, K. Leskov, S. Miyamoto, G. Luo, D.A. Boothman, Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22, 5813–5827 (2003)

    Article  Google Scholar 

  96. B.B. Aggarwal, G. Sethi, K.S. Ahn, S.K. Sandur, M.K. Pandey, A.B. Kunnumakkara et al., Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann. N. Y. Acad. Sci. 1091, 151–169 (2006)

    Article  ADS  Google Scholar 

  97. H. Shimamura, Y. Terada, T. Okado, H. Tanaka, S. Inoshita, S. Sasaki, The PI3-kinase-Akt pathway promotes mesangial cell survival and inhibits apoptosis in vitro via NF-kappa B and Bad. J. Am. Soc. Nephrol. 14, 1427–1434 (2003)

    Article  Google Scholar 

  98. C.E. Hellweg, The Nuclear Factor κB pathway: A link to the immune system in the radiation response. Cancer Lett. 15, 00122–00126 (2015). (pii S0304-3835)

    Google Scholar 

  99. X. Chen, B. Shen, L. Xia et al., Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res. 62, 1213–1221 (2002)

    Google Scholar 

  100. J. Veeraraghavan, M. Natarajan, S. Aravindan, T.S. Herman, N. Aravindan, Radiation-triggered tumor necrosis factor (TNF)-α–NFκB cross-signalling favors survival advantage in human neuroblastoma cells. J. Biol. Chem. 286, 21588–21600 (2011)

    Article  Google Scholar 

  101. S. Aravindan, M. Natarajan, V. Awasthi, T.S. Herman, N. Aravindan, Novel synthetic monoketone transmute radiation triggered NFκB-dependent TNFα cross-signalling feedback maintained NFκB and favors neuroblastoma regression. PLoS ONE 8(8), e72464 (2013)

    Article  ADS  Google Scholar 

  102. H. Zhou, J. Gao, Z.Y. Lu, L. Lu, W. Dai, M. Xu, Role of c-Fos/JunD in protecting stress-induced cell death. Cell Prolif. 40, 431–444 (2007)

    Article  Google Scholar 

  103. M. Benkoussa, C. Brand, M.H. Delmotte, P. Formstecher, P. Lefebvre, Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter. Mol. Cell. Biol. 22, 4522–4534 (2002)

    Article  Google Scholar 

  104. R. Kajanne, P. Miettinen, M. Tenhunen et al., Transcription factor AP-1 promotes growth and radioresistance in prostate cancer cells. Int. J. Oncol. 35, 1175–1182 (2009)

    Google Scholar 

  105. V. Calò, M. Migliavacca, V. Bazan, M. Macaluso, M. Buscemi, N. Gebbia et al., STAT proteins: from normal control of cellular events to tumorigenesis. J. Cell. Physiol. 197, 157–168 (2003)

    Article  Google Scholar 

  106. Y. Shen, G. Devgan, J.E. Darnell Jr, J.F. Bromberg, Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc. Natl. Acad. Sci. USA 98, 1543–1548 (2001)

    Article  ADS  Google Scholar 

  107. M.H. Tsai, J.A. Cook, G.V. Chandramouli et al., Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res. 67, 3845–3852 (2007)

    Article  Google Scholar 

  108. P. Vaupel, The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5), 10–17 (2004)

    Article  Google Scholar 

  109. K.L. Bennewith, S. Dedhar, Targeting hypoxic tumor cells to overcome metastasis. BMC Cancer 11, 504 (2011)

    Article  Google Scholar 

  110. M. Yoshimura, S. Itasaka, H. Harada, M. Hiraoka, Microenvironment and radiation therapy. Biomed. Res. Int. 2013, 685308 (2013)

    Article  Google Scholar 

  111. N. Burrows, B. Telfer, G. Brabant, K.J. Williams, Inhibiting the phosphatidylinositide 3-kinase pathway blocks radiation-induced metastasis associated with Rho-GTPase and hypoxia-inducible factor-1 activity. Radiother. Oncol. 108(3), 548–553 (2013)

    Article  Google Scholar 

  112. R.K. Schmidt-Ullrich, P. Dent, S. Grant, R.B. Mikkelsen, K. Valerie, Signal transduction and cellular radiation responses. Radiat. Res. 153, 245–257 (2000)

    Article  Google Scholar 

  113. A. Munshi, R. Ramesh, Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4(9–10), 401–408 (2013)

    Article  Google Scholar 

  114. S.A. Amundson, M. Bittner, Y. Chen et al., Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene 18, 3666–3672 (1999)

    Article  Google Scholar 

  115. K.Y. Jen, V.G. Cheung, Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res. 13, 2092–2100 (2003)

    Article  Google Scholar 

  116. N.F. Marko, P.B. Dieffenbach, G. Yan et al., Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal beta vs. external gamma radiation. FASEB J 17, 1470–1486 (2003)

    Article  Google Scholar 

  117. C. Su, G. Gao, S. Schneider, C. Helt, C. Weiss, M.A. O’Reilly, D. Bohmann, J. Zhao, DNA damage induces down regulation of histone gene expression through the G1 checkpoint pathway. EMBO J. 23, 1133–1143 (2004)

    Article  Google Scholar 

  118. S.A. Amundson, K.T. Do, S. Shahab et al., Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat. Res. 154, 342–346 (2000)

    Article  Google Scholar 

  119. A. Suetens, M. Moreels, R. Quintens, S. Chiriotti, K. Tabury, A. Michaux, V. Grégoire, S. Baatout, Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study. Int. J. Oncol. 44(4), 1056–1072 (2014)

    Google Scholar 

  120. A.R. Snyder, W.F. Morgan, Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev. 23, 259–268 (2004)

    Article  Google Scholar 

  121. G.C. Barnett, C.M. West, A.M. Dunning et al., Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer 9, 134–142 (2009)

    Article  Google Scholar 

  122. N.G. Burnet, J. Johansen, I. Turesson, J. Nyman, J.H. Peacock, Describing patients’ normal tissue reactions: concerning the possibility of individualising radiotherapy dose prescriptions based on potential predictive assays of normal tissue radiosensitivity. Steering Committee of the BioMed2 European Union Concerted Action Programme on the Development of Predictive Tests of Normal Tissue Response to Radiation Therapy. Int. J. Cancer 79, 606–613 (1998)

    Article  Google Scholar 

  123. T. Holscher, S.M. Bentzen, M. Baumann, Influence of connective tissue diseases on the expression of radiation side effects: a systematic review. Radiother. Oncol. 78, 123–130 (2006)

    Article  Google Scholar 

  124. G.C. Barnett, G. De Meerleer, S.L. Gulliford, M.R. Sydes, R.M. Elliott, D.P. Dearnaley, The impact of clinical factors on the development of late radiation toxicity: results from the Medical Research Council RT01 trial (ISRCTN47772397). Clin. Oncol. 23(9), 613–624 (2011)

    Article  Google Scholar 

  125. N.G. Burnet, G.C. Barnett, R.M. Elliott, D.P. Dearnaley, P.D. Pharoah, A.M. Dunning, C.M. West, RAPPER investigators: RAPPER: the radiogenomics of radiation toxicity. Clin. Oncol. (R. Coll. Radiol.) 25(7), 431–434 (2013)

    Article  Google Scholar 

  126. D.B. Goldstein, Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009)

    Article  Google Scholar 

  127. K. Offit, Genomic profiles for disease risk: predictive or premature? JAMA 299, 1353–1355 (2008)

    Article  Google Scholar 

  128. K. Offit, Breast cancer single-nucleotide polymorphisms: statistical significance and clinical utility. J. Natl. Cancer Inst. 101, 973–975 (2009)

    Article  Google Scholar 

  129. Z. Guo, Y. Shu, H. Zhou, W. Zhang, H. Wang, Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 36(3), 307–317 (2015)

    Article  Google Scholar 

  130. J.C. Liu, W.C. Shen, T.C. Shih, C.W. Tsai, W.S. Chang, Y. Cho, C.H. Tsai, D.T. Bau, The current progress and future prospects of personalized radiogenomic cancer study. Biomedicine (Taipei) 5(1), 2 (2015)

    Article  Google Scholar 

  131. N. Niu, Y. Qin, B.L. Fridley, J. Hou, K.R. Kalari, M. Zhu, T.Y. Wu, G.D. Jenkins, A. Batzler, L. Wang, Radiation pharmacogenomics: a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res. 20, 1482–1492 (2010)

    Article  Google Scholar 

  132. G.C. Barnett, D. Thompson, L. Fachal et al., A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother. Oncol. 111, 178–185 (2014)

    Article  Google Scholar 

  133. F. Chevalier, Highlights on the capacities of “Gel-based” proteomics. Proteome Sci. 8, 23 (2010, Apr 28)

    Google Scholar 

  134. S. Skvortsov, P. Debbage, W.C. Cho et al., Putative biomarkers and therapeutic targets associated with radiation resistance. Expert Rev. Proteomics 11(2), 207–214 (2014)

    Article  Google Scholar 

  135. S. Jung, S. Lee, J. Lee et al., Protein expression pattern in response to ionizing radiation in MCF-7 human breast cancer cells. Oncol. Lett. 3(1), 147–154 (2012)

    Google Scholar 

  136. E.C. Liao, Y.T. Hsu, Q.Y. Chuah et al., Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 5, e1255 (2014)

    Article  Google Scholar 

  137. S. Kedracka-Krok, U. Jankowska, M. Elas et al., Proteomic analysis of proton beam irradiated human melanoma cells. PLoS ONE 9(1), e84621 (2014)

    Article  ADS  Google Scholar 

  138. E.I. Azzam, J.P. Jay-Gerin, D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327(1–2), 48–60 (2012)

    Article  Google Scholar 

  139. F. Marchetti, M.A. Coleman, I.M. Jones et al., Candidate protein biodosimeters of human exposure to ionizing radiation. Int. J. Radiat. Biol. 82(9), 605–639 (2006)

    Article  Google Scholar 

  140. H. Li, Y. He, H. Zhang et al., Differential proteome and gene expression reveal response to carbon ion irradiation in pubertal mice testes. Toxicol. Lett. 225(3), 433–444 (2014)

    Article  Google Scholar 

  141. V. Bravatà, L. Minafra, G.I. Forte et al., Cytokine profile of conditioned medium from MCF10A mammary epithelial cell line and MCF7 and MDA-MB-231 breast cancer cell lines after high radiation doses. (Paper submitted) (2016)

    Google Scholar 

  142. S.I. Grivennikov, F.R. Greten, M. Karin, Immunity, inflammation, and cancer. Cell 140, 883–899 (2010)

    Article  Google Scholar 

  143. G. Multhoff, J. Radons, Radiation, inflammation, and immune responses in cancer. Front. Oncol. 2, 58 (2012)

    Google Scholar 

  144. A. Deorukhkar, S. Krishnan, Targeting inflammatory pathways for tumor radiosensitization. Biochem. Pharmacol. 80, 1904–1914 (2010)

    Article  Google Scholar 

  145. D. Starenki, H. Namba, V. Saenko et al., Inhibition of nuclear factor-kappaB cascade potentiates the effect of a combination treatment of anaplastic thyroid cancer cells. J. Clin. Endocrinol. Metab. 89, 410–418 (2004)

    Article  Google Scholar 

  146. Y. Yamamoto, R.B. Gaynor, Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107, 135–142 (2001)

    Article  Google Scholar 

  147. Z. Yang, L. Guo, D. Liu et al., Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop. Oncotarget 10, 5072–5087 (2015)

    Article  Google Scholar 

  148. Z.T. Schafer, J.S. Brugge, IL-6 involvement in epithelial cancers. J. Clin. Invest. 117, 3660–3663 (2007)

    Article  Google Scholar 

  149. Z. Culig, M. Puhr, Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol. Cell. Endocrinol. 360, 52–58 (2012)

    Article  Google Scholar 

  150. Y. Guo, F. Xu, T. Lu et al., Interleukin-6 signalling pathway intargeted therapy for cancer. Cancer Treat. Rev. 38, 904–910 (2012)

    Article  Google Scholar 

  151. Y. Katsuno, S. Lamouille, R. Derynck, TGF-β signalling and epithelial mesenchymal transition in cancer progression. Curr. Opin. Oncol. 25, 76–84 (2013)

    Article  Google Scholar 

  152. K.L. Andarawewa, A.C. Erickson, W.S. Chou et al., Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res. 67, 8662–8670 (2007)

    Article  Google Scholar 

  153. M. Wang, M. Hada, J. Huff et al., Heavy ions can enhance TGFβ mediated epithelial to mesenchymal transition. J. Radiat. Res. 53, 51–57 (2012)

    Article  Google Scholar 

  154. E. Buck, A. Eyzaguirre, S. Barr et al., Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol. Cancer Ther. 6, 532–541 (2007)

    Article  Google Scholar 

  155. L. Minafra, V. Bravatà, G.I. Forte et al., Gene expression profiling of epithelial-mesenchymal transition in primary breast cancer cell culture. Anticancer Res. 34, 2173–2183 (2014)

    Google Scholar 

  156. L. Minafra, R. Norata, V. Bravatà et al., Unmasking epithelial-mesenchymal transition in a breast cancer primary culture: a study report. BMC Res. Notes 5, 343 (2012)

    Article  Google Scholar 

  157. Y.C. Zhou, J.Y. Liu, J. Li et al., Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Int. J. Radiat. Oncol. Biol. Phys. 81, 1530–1537 (2011)

    Article  Google Scholar 

  158. J. Yarnold, M.C. Brotons, Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97, 149–161 (2010)

    Article  Google Scholar 

  159. M.F. Jobling, J.D. Mott, M.T. Finnegan et al., Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat. Res. 166, 839–848 (2006)

    Article  Google Scholar 

  160. D. Sheppard, Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. Proc. Am. Thorac. Soc. 3, 413–417 (2006)

    Article  Google Scholar 

  161. A.R. Young, M. Narita et al., SASP reflects senescence. EMBO Rep. 10, 228–230 (2009)

    Article  Google Scholar 

  162. J.P. Coppé, P.Y. Desprez, A. Krtolica et al., The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010)

    Article  Google Scholar 

  163. G.V. Raghuram, P.K. Mishra, Stress induced premature senescence: a new culprit in ovarian tumorigenesis? Indian J. Med. Res. 140, S120–S129 (2014)

    Google Scholar 

  164. J. Brieger, P. Schroeder, J. Gosepath et al., Vascular endothelial growth factor and basic fibroblast growth factor are released by squamous cell carcinoma cell lines after irradiation and increase resistance to subsequent irradiation. Int. J. Mol. Med. 16, 159–164 (2005)

    Google Scholar 

  165. S. Desai, A. Kumar, S. Laskar, B.N. Pandey, Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine 61, 54–62 (2013)

    Article  Google Scholar 

  166. B. Frey, Y. Rubner, R. Wunderlich et al., Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation—implications for cancer therapies. Curr. Med. Chem. 19, 1751–1764 (2012)

    Article  Google Scholar 

  167. M. Pucci, V. Bravatà, G.I. Forte et al., Caveolin-1, breast cancer and ionizing radiation. Cancer Genomics Proteomics 12(3), 143–152 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Minafra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Minafra, L., Bravatà, V., Cammarata, F.P., Forte, G.I. (2016). Radiation Therapy Towards Laser-Driven Particle Beams: An “OMICS” Approach in Radiobiology. In: Giulietti, A. (eds) Laser-Driven Particle Acceleration Towards Radiobiology and Medicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31563-8_4

Download citation

Publish with us

Policies and ethics