Skip to main content

Laser-Plasma Accelerators Based Ultrafast Radiation Biophysics

  • Chapter
  • First Online:
Laser-Driven Particle Acceleration Towards Radiobiology and Medicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The innovating advent of TeraWatt lasers able to drive laser-plasma accelerators and produce ultra-short relativistic electron beams in the MeV range, combined with ultrafast spectroscopy methods, opens exciting opportunities for the emerging domain of high energy radiation femtochemistry (HERF). In synergy with low energy radiation femtochemistry (LERF) , HERF favours the development of new conceptual approaches for pulsed radiation biology and medicine. The unprecedented high dose rate delivered by ultrashort relativistic electron beams (1012–1013 Gy s−1) with laser techniques can be used to investigate the spatio-temporal approach of early radiation processes. The chapter focuses on early physico-chemical phenomena which occur in the prethermal regime of secondary electrons, considering the sub-structures of tracks and very short-lived quantum probes. This interdisciplinary breakthrough would provide guidance for the real-time nanodosimetry of molecular targets in integrated biologically relevant environments and would open new perspectives for the conceptualisation of time-dependent molecular RBE (Relative Biological Effectiveness), in synergy with particle based anticancer radiotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    Article  ADS  Google Scholar 

  2. V. Malka, S. Fritzler, E. Lefebvre, M.M. Aleonard, F. Burgy, J.P. Chambaret, J.F. Chemin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.P. Rousseau, J.N. Scheurer, B. Walton, A.E. Dangor, Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002)

    Article  ADS  Google Scholar 

  3. E. Erasey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Article  ADS  Google Scholar 

  4. T. Tajima, Laser acceleration and its future. Proc. Jpn. Acad. Ser. 86, 147–157 (2010)

    Article  Google Scholar 

  5. Malka, V., Laser plasma accelerators, in Laser-Plasma Interactions and Applications, eds. by P. McKenna, D. Neely, R. Bingham, D. Jaroszynski (Springer International Publishing, Swizerland, 231–301, 2013)

    Google Scholar 

  6. Y. Gauduel, S. Fritzler, A. Hallou, Y. Glinec, V. Malka, Femtosecond relativistic electron beam triggered early bioradical events, in Femtosecond Laser Applications in Biology, SPIE, vol. 5463 (2004), pp. 86–96

    Google Scholar 

  7. V. Malka, J. Faure, Y. Gauduel, E. Lefebvre, A. Rousse, K. Ta Phuoc, Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447–453 (2008)

    Google Scholar 

  8. V. Malka, J. Faure, Y.A. Gauduel, Ultra-short electron beams based spatio-temporal radiation biology and radiotherapy. Mut. Res. Rev. 704, 142–151 (2010)

    Article  Google Scholar 

  9. A. Giulietti, M.G. Andreassi, C. Greco, Pulse radiobiology with laser-driven plasma accelerators, in SPIE Proceedings, vol. 8079 (2011), p. 80791J

    Google Scholar 

  10. Y.A. Gauduel, O. Lundh, M.T. Martin, V. Malka, Laser-plasma accelerators-based high-energy radiation femtochemistry and spatio-temporal radiation biomedicine, in SPIE Optics and Optoelectronics Laser sources and applications, vol. 8433 (2012), p. 843313

    Google Scholar 

  11. Y.A. Gauduel, Spatio-temporal radiation biology: an emerging transdisciplinary domain. Mut. Res. Rev. 704, 1 (2010)

    Article  Google Scholar 

  12. J.C. Diels, W. Rudolph (eds.), Ultrashort laser pulse phenomena (Academic Press, New York, 1996)

    Google Scholar 

  13. H.A. Zewail (ed.), Femtochemistry: ultrafast dynamics of the chemical bond (World Scientific, Singapore, 1994)

    Google Scholar 

  14. W. Castelman (ed.), Femtochemistry VII Fundamental Ultrafast Processes in Chemistry, Physics and Biology (Elsevier, Amsterdam, 2006)

    Google Scholar 

  15. Y.A. Gauduel, Femtochemistry: Lasers to Investigate Ultrafast Reactions Lasers in Chemistry, ed. by M. Lackner, vol. 2 (Wiley-VCH, 2008), pp. 861–898

    Google Scholar 

  16. J.H. Baxendale, F. Busi (eds.), The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis (Reidel Publishing Company, Dordrecht, 1982)

    Google Scholar 

  17. J.E. Turner, J.L. Magee, A. Wright, A. Chatterjee, R.N. Hamm, R.H. Ritchie, Physical and chemical development of electron tracks in liquid water. Rad. Res. 96, 437–449 (1983)

    Google Scholar 

  18. Y. Gauduel, P.J. Rossky (eds.), Ultrafast Reaction Dynamics and Solvent Effects (AIP Press, New York, 1994)

    Google Scholar 

  19. M.P. Allen, D.J. Tildesley (eds.), Computer Simulation of Liquids (Oxford Science Publications, 1987)

    Google Scholar 

  20. M.N. Varma, A. Chatterjee (eds.), Computational Approaches in Molecular Radiation Biology—Monte Carlo Methods (Plenum Press, New York, 1993)

    Google Scholar 

  21. J.R. Sabin, E. Brandas (eds.), Advances in Quantum Chemistry: Theory of the Interaction of Radiation with Biomolecules (Elsevier, Amsterdam, 2007)

    Google Scholar 

  22. D.N. Nikogosyan, A.A. Oraevsky, V.I. Rupasov, Two-photon ionization and dissociation of liquid water by powerful laser UV irradiation. Chem. Phys. 77, 131–143 (1983)

    Article  ADS  Google Scholar 

  23. Y. Gauduel, S. Pommeret, A. Migus, A. Antonetti, Some evidence of ultrafast H2O+-water molecule reaction in femtosecond photoionization of pure liquid water: influence on geminate pair recombination dynamics. Chem. Phys. 149, 1–10 (1990)

    Article  ADS  Google Scholar 

  24. A. Migus, Y. Gauduel, J.L. Martin, A. Antonetti, Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime. Phys. Rev. Lett. 58, 1159–1562 (1987)

    Article  ADS  Google Scholar 

  25. S. Pommeret, A. Antonetti, Y. Gauduel, Electron hydration in pure liquid water. Existence of two nonequilibrium configurations in the near-infrared region. J. Am. Chem. Soc. 113, 9105–9111 (1991)

    Article  Google Scholar 

  26. Y. Gauduel, Ultrafast electron-proton reactivity in molecular liquids, In Ultrafast Dynamics of Chemical Systems, ed. by J.D. Simon (Kluwer Publisher, 1994), pp. 81–136

    Google Scholar 

  27. Y. Gauduel, Ultrafast concerted electron-proton transfers in a protic molecular liquid, in Ultrafast Reaction Dynamics and Solvent Effects, eds. by Y. Gauduel, P.J. Rossky (AIP Press, New York, 1994), pp. 191–204

    Google Scholar 

  28. Y. Kimura, J.C. Alfano, P.K. Walhout, P.F. Barbara, Ultrafast transient absorption-spectroscopy of the solvated electron in water. J. Phys. Chem. 98, 3450–3458 (1994)

    Article  Google Scholar 

  29. R. Laenen, T. Roth, Generation of solvated electrons in neat water: new results from femtosecond spectroscopy. J. Mol. Struct. 598, 37–43 (2001)

    Article  ADS  Google Scholar 

  30. E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, P. Sprangle, Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997)

    Article  ADS  Google Scholar 

  31. A. Pukhov, J. Meyer-ter-Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002)

    Article  ADS  Google Scholar 

  32. C.G.R. Geddes, C.S. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004)

    Article  ADS  Google Scholar 

  33. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535–538 (2004)

    Article  ADS  Google Scholar 

  34. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006)

    Article  ADS  Google Scholar 

  35. C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, V. Malka, Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett. 102, 164801 (2009)

    Article  ADS  Google Scholar 

  36. V. Malka, Laser plasma accelerators: towards high quality electron beam, in Laser pulse phenomena and applications. ed. by F.J. Duarte (Intechweg. Org, 2010)

    Google Scholar 

  37. C. Thaury, E. Guillaume, A. Doepp, R. Lehe et al., Demonstration of relativistic electron beam focusing by a laser-plasma lens. Nature Comm. 6, 6860 (2015)

    Article  ADS  Google Scholar 

  38. Y.A. Gauduel, J. Faure, V. Malka, Ultrashort relativistic electron bunches and spatio-temporal radiation biology, in Proceedings of SPIE, vol. 7080 (2008), pp. 708002–1

    Google Scholar 

  39. D.A. Oulianov, R.A. Crowell, D.J. Gosztola, I.A. Shkrob, O.J. Korovyanko, R.C., Rey-de-Castro, Ultrafast pulse radiolysis using a terawatt laser wakefield accelerator. J. Appl. Phys., 101, 053102-1-9 (2007)

    Google Scholar 

  40. B. Brozek-Pluska, D. Gliger, A. Hallou, V. Malka, Y. Gauduel, Direct observation of elementary radical events: low and high-energy radiation femtochemistry in solution. Rad. Phys. Chem. 72, 149–157 (2005)

    Article  ADS  Google Scholar 

  41. Y.A. Gauduel, Y. Glinec, J.P. Rousseau, F. Burgy, V. Malka, High energy radiation femtochemistry of water molecules: early electron-radical pairs processes. Eur. Phys. J. D 60, 121–135 (2010)

    Article  ADS  Google Scholar 

  42. Y.A. Gauduel, Laser-plasma accelerator based femtosecond high energy radiation chemistry and biology. J. Phys. CS 373, 012012 (2012)

    ADS  Google Scholar 

  43. Y.A. Gauduel, Synergy between low and high energy radical femtochemistry. J. Phys Ser. 261, 0120006 (2011)

    Google Scholar 

  44. T. Kai, A. Yokoya, M. Ukai, R. Watanabe, Cross sections, stopping powers, and energy loss rates for rotational and phonon excitation processes in liquid water by electron impact Rad. Phys. Chem 108, 13–17 (2015)

    ADS  Google Scholar 

  45. Farhataziz, M.A.J. Rodgers (eds.), Radiation Chemistry (VCH Publishers, 1987)

    Google Scholar 

  46. G.R. Freeman (ed.), Kinetics of Nonhomogeneous Processes (Wiley, New York, 1987), pp. 377–403

    Google Scholar 

  47. N.J.B. Green, M.J. Pilling, S. Pimblott, P. Clifford, Stochastic modeling of fast kinetics in radiation tracks. J. Phys. Chem. 94, 251–258 (1990)

    Article  Google Scholar 

  48. D.M. Bartels, A.R. Cook, M. Mudaliar, C.D. Jonah, Spur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopy. J. Phys. Chem. A 104, 1686–1691 (2000)

    Article  Google Scholar 

  49. S.A. Isaacson, The reaction-diffusion master equation as an asymptotic approximation of diffusion at a small target. J. Appl. Math 70, 77–111 (2009)

    MathSciNet  MATH  Google Scholar 

  50. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004)

    Article  ADS  Google Scholar 

  51. S.M. Hooker, Developments in laser-driven plasma accelerators. Nat. Photonics 7, 775–782 (2013)

    Article  ADS  Google Scholar 

  52. L. Onsager, Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486 (1936)

    Article  Google Scholar 

  53. A.C. Chernovitz, C.D. Jonah, Isotopic dependence of recombination kinetics in water. J. Phys. Chem. 92, 5946–5950 (1988)

    Article  Google Scholar 

  54. H.G. Paretzke, Radiation track structure theory, in Kinetics of nonhomogeneous processes, ed. by G.R. Freeman (Wiley, New York, 1987), pp. 89–170

    Google Scholar 

  55. K.Y. Lam, J.W. Hunt, Picosecond pulsed-radiolysis 6. Fast electron reactions in concentrated solutions of scavengers in water and alcohols. Int. J. Radiat. Phys. Chem. 7, 317–338 (1975)

    Article  Google Scholar 

  56. S.M. Pimblott, J.A. La Verne, D.M. Bartels, C.D. Jonah, Reconciliation of transient absorption and chemically scavenged yields of the hydrated electron in radiolysis. J. Phys. Chem. 100, 9412–9415 (1996)

    Article  Google Scholar 

  57. C.D. Jonah, D.M. Bartels, A.C. Chernovitz, Primary processes in the radiation chemistry of water. Radiat. Phys. Chem. 34, 145–156 (1989)

    ADS  Google Scholar 

  58. P. Han, D.M. Bartels, H/D isotope effects in water radiolysis 2. Dissociation of electronically excited water. J. Phys. Chem. 94, 5824–5833 (1990)

    Article  Google Scholar 

  59. Y. Gauduel, S. Berrod, A. Migus, N. Yamada, A. Antonetti, Femtosecond charge separation in organized assemblies: free-radical reactions with pyridine nucleotides in micelles. Biochemistry 27, 2509–2518 (1988)

    Article  Google Scholar 

  60. J. Nguyen, Y. Ma, T. Luo, R.G. Bristow, D.A. Jaffray, Q.B. Lu, Direct ultrafast-electron-transfer reaction unravels high effectiveness of reductive DNA damage. Proc. Nat. Acad. Sci., 108, AA778–11783 (2011)

    Google Scholar 

  61. L. Sanche, Beyond radical thinking. Nature 461, 358–359 (2009)

    Article  ADS  Google Scholar 

  62. E. Alizadeh, L. Sanche, Precursors of solvated electrons in radiological physics and chemistry. Chem. Rev. 112, 5578–5602 (2012)

    Article  Google Scholar 

  63. Y. Gauduel, M. Sander, H. Gelabert, Ultrafast reactivity of IR-excited electron in aqueous ionic solutions. J. Phys. Chem. A 102, 7795–7803 (1998)

    Article  Google Scholar 

  64. Y. Gauduel, H. Gelabert, F. Guilloud, Real-time probing of a three-electron bonded radical: Ultrafast one-electron reduction of a disulfide biomolecule. J. Am. Chem. Soc. 122, 5082–5091 (2000)

    Article  Google Scholar 

  65. Y. Gauduel, A. Hallou, B. Charles, Short-time water caging and elementary prehydration redox reactions in ionic environments. J. Phys. Chem. A 107, 2011–2024 (2003)

    Article  Google Scholar 

  66. E.R. Bittner, P.J. Rossky, Quantum decoherence in mixed quantum-classical systems nonadiabatic processes. J. Phys. Chem. 103, 8130–8143 (1995)

    Article  Google Scholar 

  67. T.H. Murphrey, P.J. Rossky, Quantum dynamics simulation with approximate eigenstates. J. Chem. Phys 103, 6665 (1995)

    Article  ADS  Google Scholar 

  68. B.J. Schwartz, P.J. Rossky, Aqueous solvation dynamics with a quantum mechanical solute: computer simulation studies of the photoexcited hydrated electron. J. Chem. Phys. 101, 6902–6916 (1994)

    Article  ADS  Google Scholar 

  69. O.V. Prezhdo, P.J. Rossky, Solvent mode participation in the nonradiative relaxation of the hydrated electron. J. Phys. Chem. 100, 17094 (1996)

    Article  Google Scholar 

  70. L. Turi, P.J. Rossky, Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem. Rev. 112, 5641–5674 (2012)

    Article  Google Scholar 

  71. Q.B. Lu, Effects and applications of ultrashort-lived prehydrated electrons in radiation biology and radiotherapy of cancer. Mut. Res. Rev. 704, 190–199 (2010)

    Article  Google Scholar 

  72. P. Lopez-Tarifa, M.P. Gaigeot, R. Vuilleumier, I. Tavernelli, M. Alcami, F. Martin, M.A.H. du Penhoat, M.F. Politis, Ultrafast damage following radiation-induced oxidation of uracil in aqueous solution. Angew. Chem. Int. Ed. 52, 3160–3163 (2013)

    Article  Google Scholar 

  73. S. Minardi, C. Milián, D. Majus, A. Gopal, G. Tamošauskas, A. Couairon, T. Pertsch, A. Dubietis, Energy deposition dynamics of femtosecond pulses in water. Appl. Phys. Lett. 105, 224104 (2014)

    Article  ADS  Google Scholar 

  74. M.H. Elkins, H.L. Williams, A.T. Shreve, D.M. Neumark, Relaxation mechanism of the hydrated electron. Science 342, 1496–1499 (2013)

    Article  ADS  Google Scholar 

  75. J. Savolainen, F. Uhlig, S. Ahmed, P. Hamm, P. Jungwirth, Direct observation of the collapse of the delocalized excess electron in water. Nat. Chem. 6, 687–701 (2014)

    Google Scholar 

  76. Y.A. Gauduel, V. Malka, Ultrafast sub-nanometric spatial accuracy of a fleeting quantum probe interaction with a biomolecule: innovating concept for spatio-temporal radiation biomedicine, in SPIE Proceedings, vol. 8954, 89540A1–12 (2014)

    Google Scholar 

  77. H. Blattmann, J.O. Gebbers, E. Brauer-Krisch, A. Bravin, G. Le Duc, W. Burkard, M. Di Michiel, V. Djonov, D.N. Slatkin, J. Stepanek, J. Laissue, Applications of synchrotron X-rays to radiotherapy. Nucl. Instrum. Methods Phys. Res. Sect. A 548, 17–22 (2005)

    Article  ADS  Google Scholar 

  78. K.M. Prise, New advances in radiation biology. Occup. Med. 56, 156–161 (2006)

    Article  Google Scholar 

  79. A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Physics of ion beam cancer therapy: a multiscale approach. Phys. Rev. E, 79, 011909 (2009)

    Google Scholar 

  80. C. DesRosiers, V. Moskin, C. Minsong, Laser-plasma generated very high energy electrons in radiation therapy of the prostate, in SPIE Proceedings, vol. 6881 (2008), pp. 688109–1

    Google Scholar 

  81. J. Tajima, D. Habs, X. Yan, Laser acceleration of ions for radiation therapy. Rev. Acc. Sci. Tech. 2, 201–228 (2009)

    Article  Google Scholar 

  82. S.D. Kraft, C. Richter, K. Zeil, M. Baumann, E. Beyreuther, S. Bock, M. Bussmann, T.E. Cowan, Y. Dammene, W. Enghardt, U. Helbig, L. Karsch, T. Kluge, L. Laschinsky, E. Lessmann, J. Metzkes, D. Naumburger, R. Sauerbrey, M. Schürer, M. Sobiella, J. Woithe, U. Schramm, J. Pawelke, Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J. Phys. 12, 085003 (2010)

    Article  ADS  Google Scholar 

  83. K.W.D. Ledingham, P.R. Bolton, N. Shikazono, C.M.C. Ma, Towards laser driven hadron cancer radiotherapy: a review of progress. Appl. Sci Basel 4, 402–443 (2014)

    Article  Google Scholar 

  84. U. Masood, M. Bussmann, T. Cowan, W. Engardt, L., Karsch, F. Kroll, U. Schramm, J. Pawelke, A compact solution for ion beam therapy with laser accelerated proton. Appl. Phys. B., Lasers and Optics, 117, 41–52 (2014)

    Google Scholar 

  85. Y.E. Dubrova, M. Plumb, B. Gutierrez, E. Boulton, A.J. Jeffreys, Transgenerational mutation by radiation. Nature 405, 37 (2000)

    Article  ADS  Google Scholar 

  86. W.R. Hendee, G.S. Ibbott, E.G. Hendee, Radiation therapy physics (Wiley-Liss Ed., 2005)

    Google Scholar 

  87. C. Von Sonntag (ed.), Free-radical-Induced DNA Damage and its Repair (Springer, Heidelberg, 2006)

    Google Scholar 

  88. Y. Horowitz (ed.), Microdosimetric Response of Physical and Biological Systems to Low and High Let Radiations: Theory and Appplication to Dosimetry (Elsevier, Amsterdam, 2006)

    Google Scholar 

  89. M. Shukla, J. Leszczynski, Radiation Induced Molecular Phenomena in Nucleic Acids: A Comprehensive Theoretical and Experimental Analysis (Springer Ed., 2008)

    Google Scholar 

  90. I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Electron-induced damage of DNA and its compenents: experiments and theoretical models. Phys. Rep. 508, 1 (2011)

    Article  ADS  Google Scholar 

  91. D. Verellen, G. Soete, N. Linthout, S. Van Acker, P. De Roover, V. Vinh-Hung, J. Van de Steen, G. Storme, Quality assurance of a system for improved target localization and patient set-up. Rad. Oncol. 67, 129–141 (2003)

    Article  Google Scholar 

  92. Y.A. Gauduel (ed.), Spatio-temporal radiation biology: transdisciplinary advances for medical applications. Mut. Res. Rev. 704, 214 (2010)

    Google Scholar 

  93. M. Orth, K. Lauber, M. Miyazi, A.A. Frield, M.L. Li, C. Maihafer, L. Schuttrumpf, A. Ernst, O.M.M Niemoller, C. Belka, Current concepts in clinical radiation oncology. Rad. Env. Biophys. 53, 1–29 (2014)

    Google Scholar 

  94. S. Feuerhahn, J.M. Egly, Tool to study DNA repair: what’s in the box? Trends Genet. 24, 467–474 (2008)

    Article  Google Scholar 

  95. M. Shukla, J. Leszczynski, Radiation Induced Molecular Phenomena in Nucleic Acids: A Comprehensive Theoretical and Experimental Analysis (Springer Ed., 2008)

    Google Scholar 

  96. X. Kong, S.K. Mohanty, J. Stephene, J.T. Feale, V. Gomez-Godinez, L.Z. Shi et al., Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res. 37, 2–14 (2009)

    Article  Google Scholar 

  97. E. Beyreuther, W. Enghardt, M. Kaluza, L. Karsch, L. Laschinsky, E. Lessmann, M. Nicolai, J. Pawelke, C. Richter, R. Sauerbrey, H.P. Schlenvoigt, M. Baumann, Establisment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons. Med. Phys. 37, 1393–1400 (2010)

    Article  Google Scholar 

  98. C. Richter, I. Karsch, Y. Dammene, S.D. Kraft, J. Metzkes, U. Schramm, M. Schürer, M. Sobiella, A. Weber, K. Zeil, Pawelke, J.A dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons. Phys. Med. Biol. 56, 1529–1543 (2011)

    Article  Google Scholar 

  99. S. Auer, V. Hable, C. Greubel, G.A. Drexler, T.E. Schmid, C. Belka, G. Dollinger, A.A. Friedl, Survival of tumor cells after proton irradiation with ultra-high dose rates. Rad. Oncol. 6, 139 (2011)

    Article  Google Scholar 

  100. V. Malka, in Laser Plasma Accelerators, Laser-Plasma Interactions and Applications, eds. by P. McKenna, D. Neely, R. Bingham and D. Jaroszynski (Springer International Publishing, Swizerland, 2013), pp. 231–301

    Google Scholar 

  101. Y. Glinec, J. Faure, V. Malka, T. Fuchs, H. Szymanoswki, U. Oelke, Radiotherapy with laser-plasma accelerators: Monte-Carlo simulation of dose deposited by an experimental quasimonoenergetic electron beam. Med. Phys. 33, 155–162 (2006)

    Article  Google Scholar 

  102. M. Kramer, M. Durante, Ion beam transport calculations and treatment plans in particle therapy. Eur. Phys. J. D 60, 195–202 (2010)

    Article  ADS  Google Scholar 

  103. J.F. Hainfeld, F.A. Dimanian, D.N. Slatkin, H.M. Smilowitz, Radiotherapy enhancement with gold nanoparticles. J. Pharm. Phramacol. 60, 977–985 (2008)

    Article  Google Scholar 

  104. S.X. Zhang, J. Gao, T.A. Buchholtz, Z. Wang, M.R. Salehpour, R.A. Drezek, T. Yu, Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a Monte Carlo simulation study. Biomed. Microdevices 11, 925–933 (2009)

    Article  Google Scholar 

  105. W.N. Rahman, N. Bishara, T. Ackerly, C.F. He, P. Jackson, C. Wong, R. Davidson, M. Geso, Nanomed. Nanotech. Biol Med. 5, 136–142 (2009)

    Article  Google Scholar 

  106. S.J. McMahon, W.B. Hyland, M.F. Muir, J.A. Coulter, S. Jain, K.T. Butterworth, G. Schettino, G.R. Dickson, A.R. Hounsell, J.M. O’Sullivan, K.M. Prise, D.G. Hirst, F.J. Currell, Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Reports 1, 18 (2011)

    ADS  Google Scholar 

  107. E. Porcel, O. Tillement, F. Lux, P. Mowat, N. Usami, K. Kobayashi, Y. Furusawa, C. LeSech, S. Li, S. Lacombe, Gadolinium-based nanoparticles ti improve the hadrontherapy performances. Nanomed. Nanothec. Biophys. Med. 10, 1601–1608 (2014)

    Article  Google Scholar 

  108. N. Gault, O. Rigaud, J.L. Poncy, J.L. Lefaix, Biochemical alterations in human cells irradiated with alpha particles delivered by macro- or microbeams. Radiat. Res. 167, 551–562 (2007)

    Article  Google Scholar 

  109. G. Schettino, M. Ghita, K.M. Prise, Spatio-temporal analysis of DNA damage repair using the X-ray microbeam. Eur. Phys. J. D 60, 157–161 (2010)

    Article  ADS  Google Scholar 

  110. H. Kempf, M. Bleicher, M. Meyer-Hermann, Spatio-temporal cell dynamics in tumour speroid irradiation. Eur. Phys. J., D, 60, 177–193 (2010)

    Google Scholar 

  111. A.L. Hein, M.M. Ouellette, Y. Yan, Radiation-induced signaling pathways that promote cancer cell survival. Int. J. Oncol. 45, 1813–1819 (2014)

    Google Scholar 

  112. C. Tillman, G. Grafström, A.C. Jonsson, I. Mercer, S. Mattsson, S.E. Stand, S. Svanberg, Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma X-ray source. Radiobiol. 213, 860–865 (1999)

    Google Scholar 

  113. K. Shinohara, H. Nakano, N. Miyazaki, M. Tago, T. Kodama, Effects of single-pulse (≤1 ps) X-rays from laser-produced plasmas on mammalian cells. J. Radiat. Res. 45, 509–514 (2004)

    Article  Google Scholar 

  114. A. Yogo, K. Sato, M. Nishikino, M. Mori, T. Teshima, K. Numasaki, M. Murakani, Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett. 94, 181502 (2009)

    Article  ADS  Google Scholar 

  115. K. Sato, M. Nishikino, Y. Okano, S. Ohshima, N. Hasegawa, M. Ishino, T. Kawachi, H. Numasaki, T. Teshima, H. Nishimura, γ-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation. Rad. Res., 174, 436–445 (2010)

    Google Scholar 

  116. P.L. Olive, J.P. Banath, The comet assay: a method to measure DNA damage in individual cells. Nat. Protocols 1, 23–26 (2006)

    Article  Google Scholar 

  117. O. Rigaud, N.O. Fortunel, P. Vaigot, E. Cadio, M.T. Martin, O. Lundh, J. Faure, C. Rechatin, V. Malka, Y.A. Gauduel, Exploring ultrashort high-energy electron-induced damage in human carcinoma cells. Cell Death Dis. 1, e73 (2010)

    Article  Google Scholar 

  118. S.S. Lo, B.S. Teh, J.J. Lu, T.E. Shefter (eds.), Stereotactic Body Radiation Therapy (Springer, 2012)

    Google Scholar 

  119. S.M. Huber, L. Butz, B. Stegen, D. Klumpp, N. Braun, P. Ruth, F. Eckert, Ionizing radiation, ion transports and radioresistance of cancer cells. Front. Physiol. 14, 212 (2013)

    Google Scholar 

  120. A. Giulietti, N. Bourgeois, T. Ceciotti, X. Davoine, S. Dobosz, P. D’Oliveira, M. Galimberti, J. Galy, A. Gamucci, D. Giulietti, L.A. Gizzi, D. Hamilton, E. Lefebvre, L. Labata, J.R. Marques, P. Monot, A. Popescu, F. Reau, G. Sarri, P. Tomassini, P. Martin, Intense gamma-ray source in the giant dipole resonance range driven by 10-TW laser pulses Phys. Rev. Lett. 101, 105002 (2008)

    Article  ADS  Google Scholar 

  121. T. Fuchs, H. Szymanowski, U. Oelfke, Y. Glinec, C. Rechatin, J. Faure, V. Malka, Treatment planning for laser-accelerated very-high energy electrons. Phys. Med. Biol. 54, 3315–3328 (2009)

    Article  Google Scholar 

  122. T. Elsässer, R. Cunrath, M. Krämer, M. Scholz, Impact of track structure calculations on biological treatment planning in ion radiotherapy. New J. Phys., 10, 07005.1–07005.17 (2008)

    Google Scholar 

  123. E. Guillaume, A. Döpp, C. Thaury, A. Lifschitz, J.P. Goddet, A. Tafzi, F. Sylla, G. Iaquanello, T. Lefrou, P. Rousseau, K. Ta Phuoc , V. Malka, Physics of fully-loaded laser-plasma accelerators. Phys. Rev. ST Accel. Beams, 18, 061301 (2015)

    Google Scholar 

  124. E. Beyreuther, L. Karsch, L. Laschinsky, E. Lebmann, D. Namburger, M. Oppelt, C. Richter, M. Schürer, J. Woithe, J. Pawelke, Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate. Int. J. Rad. Biol. 91, 643–652 (2015)

    Article  Google Scholar 

  125. M. Weik, R.B. Ravelli, G. Kryger, S. Mc Sweeney, M.L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, J.L. Sussman, Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc. Nat. Acad. Sci. USA, 97, 623–628 (2000)

    Google Scholar 

  126. P.J. Coastes, S.A. Lorimore, E.G. Wright, Damaging and prospective cell signalling in the untargeted effects of ionizing radiation. Mut. Res. 568, 5–20 (2004)

    Article  Google Scholar 

  127. I.B. Bersuker, The Jahn-Teller Effects and Vibronic Interactions in Modern Chemistry (Plenum Press Ed., New York, 1984)

    Google Scholar 

  128. L.M. Mendes Soares, J. Valcarcel, The expanding transcriptome: the genoma as the “Book of Sand”. EMBO J. 25, 923–931 (2006)

    Article  Google Scholar 

  129. M.P. Gaigeot, R. Vuilleumier, C. Stia, M.E. Galassi, R. Rivarola, B. Gervais, M.F. Politis, A multi-scale ab initio theoretical study of the production of free radicals in swift ion tracks in liquid water. J. Phys. B 40, 1–12 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  130. I. Tavernelli, M.P. Gaigeot, R. Vuilleumier, C. Stia, M.A. Hervé du Penhoat, M.F. Politis, Time dependent density functional theory molecular dynamics simulations of liquid water radiolysis. ChemPhysChem 9, 2099–2103 (2008)

    Article  Google Scholar 

  131. A. Ogata, T. Kondoh, J. Yang, A. Yoshida, Y. Yoshida, LWFA of atto-second and femtosecond bunches for pulse radiolysis. Int. J. Mod. Phys. 21, 447–459 (2007)

    Article  ADS  Google Scholar 

  132. H.P. Schenvoigt, K. Haupt, A. Debus, F. Budde, O. Jäckel, S. Pfotenhauer, H. Schwoerer, E. Rohwer, J.G. Gallacher, E. Brunetti, R.P. Shanks, S.M. Wiggins, D.A. Jarosyznski, A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130–133 (2008)

    Article  Google Scholar 

  133. B. Grosswendt, Nanodosimetry, from radiation physics to radiation biology. Rad. Protec. Dos. 115, 1–9 (2005)

    Article  Google Scholar 

  134. V. Conte, P. Colautti, B. Grosswendt, D. Moro, L. De Nardo, Track structure of light ions: experiments and simulations. New J. Phys. 14, 093010 (2012)

    Article  ADS  Google Scholar 

  135. X. Guano, H. Mcleod, Strategies for enzyme/prodrug cancer therapy. Clin. Canc. Res. 7, 3314–3324 (2001)

    Google Scholar 

  136. F. Kratz, I.A. Müller, C. Ryppa, A. Warnecke, Prodrug strategies in anticancer chemotherapy. ChemMedChem 3, 20–53 (2008)

    Article  Google Scholar 

  137. Y. Zheng, D.J. Hunting, P. Ayotte, L. Sanche, Role of secondary low-energy electrons in the concomitant chemoradiation therapy of cancer. Phys. Rev. Lett. 100, 198101 (2008)

    Article  ADS  Google Scholar 

  138. J. Biau, F. Devun, W. Jdey, E. Kotula, M. Quanz, E. Chautard, M. Sayarath, S.S. Sun, P. Verrelle, M. Dutreix, A Preclinical study combining the DNA Repair Inhibitor Dbait with radiotherapy for the treatment of melanoma. Neoplasia 16, 835–844 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann A. Gauduel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gauduel, Y.A. (2016). Laser-Plasma Accelerators Based Ultrafast Radiation Biophysics. In: Giulietti, A. (eds) Laser-Driven Particle Acceleration Towards Radiobiology and Medicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31563-8_2

Download citation

Publish with us

Policies and ethics