Advertisement

Attribute-Based Signatures with Controllable Linkability

  • Miguel UrquidiEmail author
  • Dalia Khader
  • Jean Lancrenon
  • Liqun Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9565)

Abstract

We introduce Attribute-Based Signatures with Controllable Linkability ABS-CL. In general, Attribute-Based Signatures allow a signer who possesses enough attributes to satisfy a predicate to sign a message without revealing either the attributes utilized for signing or the identity of the signer. These signatures are an alternative to Identity-Based Signatures for more fine-grained policies or enhanced privacy. On the other hand, the Controllable Linkability notion introduced by Hwang et al. [14] allows an entity in possession of the linking key to determine if two signatures were created by the same signer without breaking anonymity. This functionality is useful in applications where a lower level of anonymity to enable linkability is acceptable, such as some cases of vehicular ad-hoc networks, data mining, and voting schemes. The ABS-CL scheme we present allows a signer with enough attributes satisfying a predicate to sign a message, while an entity with the linking key may test if two such signatures were created by the same signer, all without revealing the satisfying attributes or the identity of the signer.

Keywords

Anonymity Privacy Group signatures Attribute-Based Signatures Linkability Controllable Linkability 

Notes

Acknowledgements

The second author was partially funded by the Fonds National de la Recherche (FNR), Luxembourg. We would like to thank Ali El Kaafarani, and the anonymous reviewers of INTRUST 2015, for their valuable comments and helpful suggestions.

References

  1. 1.
    Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)CrossRefGoogle Scholar
  2. 2.
    Bohli, J.M., Pashalidis, A.: Relations among privacy notions. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(1), 4 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004). http://dx.doi.org/10.1007/978-3-540-24676-3_4 CrossRefGoogle Scholar
  4. 4.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS 2004, pp. 132–145. ACM, New York (2004). http://doi.acm.org/10.1145/1030083.1030103
  5. 5.
    Changxia, S., Wenping, M.: Secure attribute-based threshold signature without a trusted central authority. Spec. Issue Adv. Comput. Electron. Eng. 7(12), 2899 (2012)Google Scholar
  6. 6.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). http://dx.doi.org/10.1007/3-540-46416-6_22 CrossRefGoogle Scholar
  7. 7.
    El Kaafarani, A., Chen, L., Ghadafi, E., Davenport, J.: Attribute-based signatures with user-controlled linkability. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 256–269. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-12280-9_17 Google Scholar
  8. 8.
    El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-04852-9_17 CrossRefGoogle Scholar
  9. 9.
    Gagné, M., Narayan, S., Safavi-Naini, R.: Short pairing-efficient threshold-attribute-based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 295–313. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-36334-4_19 CrossRefGoogle Scholar
  10. 10.
    Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 391–409. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-16715-2_21 Google Scholar
  11. 11.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-78967-3_24 CrossRefGoogle Scholar
  12. 12.
    Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signatures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 51–67. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-27954-6_4 CrossRefGoogle Scholar
  13. 13.
    Hwang, J.Y., Chen, L., Cho, H.S., Nyang, D.: Short dynamic group signature scheme supporting controllable linkability. IEEE Trans. Inf. Forensics Secur. 10(6), 1109–1124 (2015)CrossRefGoogle Scholar
  14. 14.
    Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Short group signatures with controllable linkability. In: 2011 Workshop on Lightweight Security Privacy: Devices, Protocols and Applications (LightSec), pp. 44–52, March 2011Google Scholar
  15. 15.
    Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013). http://www.sciencedirect.com/science/article/pii/S0020025512005373, including Special Section on New Trends in Ambient Intelligence and Bio-inspired SystemsMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Khader, D.: Attribute-based group signature with revocation (2007)Google Scholar
  17. 17.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: achieving attribute-privacy and collusion-resistance (2008)Google Scholar
  18. 18.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-19074-2_24 CrossRefGoogle Scholar
  19. 19.
    Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-19379-8_3 CrossRefGoogle Scholar
  20. 20.
    Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-36362-7_9 CrossRefGoogle Scholar
  21. 21.
    Park, H., Kent, S.: Traceable anonymous certificate (2009)Google Scholar
  22. 22.
    Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and their application to anonymous credential systems. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-02384-2_13 CrossRefGoogle Scholar
  23. 23.
    Tate, S.R., Vishwanathan, R.: Expiration and revocation of keys for attribute-based signatures. In: Samarati, P. (ed.) DBSec 2015. LNCS, vol. 9149, pp. 153–169. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-20810-7_10 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Miguel Urquidi
    • 1
    Email author
  • Dalia Khader
    • 2
  • Jean Lancrenon
    • 1
  • Liqun Chen
    • 3
  1. 1.Interdisciplinary Centre for Security, Reliability and Trust (SnT)LuxembourgLuxembourg
  2. 2.POST Telecom PSFMamerLuxembourg
  3. 3.Hewlett Packard LabsBristolUK

Personalised recommendations