Advertisement

Efficient Implementation of AND, OR and NOT Operators for ABCs

  • Antonio de la PiedraEmail author
Conference paper
  • 318 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9565)

Abstract

In the last few years several practitioners have proposed different strategies for implementing Attribute-based credentials (ABCs) on smart cards. ABCs allow citizens to prove certain properties about themselves without necessarily revealing their full identity. The Idemix ABC is the most versatile ABC system proposed in the literature, supporting peudonyms, equality proofs of representation, verifiable encryption of attributes and proving properties of attributes via AND, NOT and OR operators. Recently, Vullers et al. and De La Piedra et al. addressed the implementation of the selective disclosure operations, pseudonyms and multi-credential proofs such as equality proofs of representation. In this manuscript, we present implementation strategies for proving properties of user attributes via these operators and show how to combine them via external and internal commitment reordering.

Keywords

Attribute-based credentials Smart cards 

References

  1. 1.
    Akhavi, A., Vallée, B.: Average Bit-Complexity of Euclidean Algorithms. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 373–387. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M., Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. J. Crypt. Eng. 3(2), 111–128 (2013)CrossRefGoogle Scholar
  3. 3.
    Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a standard Java Card. In: ACM Conference on Computer and Communications Security, pp. 600–610 (2009)Google Scholar
  4. 4.
    Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-S.: Concepts and languages for privacy-preserving attribute-based authentication. J. Inf. Sec. Appl. 19(1), 25–44 (2014)Google Scholar
  6. 6.
    Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-S.: Concepts and languages for privacy-preserving attribute-based authentication. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT, vol. 396, pp. 34–52. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials (extended version). IACR Cryptol. ePrint Arch. 2010, 496 (2010)Google Scholar
  8. 8.
    Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix anonymous credential system. In: ACM Conference on Computer and Communications Security, pp. 21–30 (2002)Google Scholar
  9. 9.
    Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Chaum, D.: Security without identification: Transaction systems to make big brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)CrossRefGoogle Scholar
  13. 13.
    Damgård, I.B.: Commitment schemes and zero-knowledge protocols. In: Damgård, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, p. 63. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Damgård, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algorithms, vol. 2, 2nd edn. Addison-Wesley, Boston (1981)zbMATHGoogle Scholar
  18. 18.
    de la Piedra, A., Hoepman, J.-H., Vullers, P.: Towards a full-featured implementation of attribute based credentials on smart cards. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 270–289. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Sterckx, M., Gierlichs, B., Preneel, B., Verbauwhede, I.: Efficient implementation of anonymous credentials on java card smart cards. In: 1st IEEE International Workshop on Information Forensics and Security (WIFS), pp. 106–110. IEEE, London, UK, 2009 (2009)Google Scholar
  20. 20.
    Vullers, P., Alpár, G.: Efficient selective disclosure on smart cards using idemix. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT, vol. 396, pp. 53–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ICIS DSRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations